Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(19): 55742-55755, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905545

ABSTRACT

The extensive usage of iron oxide nanoparticles (FeO NPs) in commercial and biomedical applications raises the risk of releasing their remains into the aquatic ecosystems and this could possibly cause cytotoxic effects on aquatic organisms. Thus, the toxicity assessment of FeO NPs on cyanobacteria, which are primary producers at the bottom of food chain in aquatic ecosystems, is essential to gain information about the potential ecotoxicological threat on aquatic biota. The present study investigated the cytotoxic effects of FeO NPs on Nostoc ellipsosporum using different concentrations (0, 10, 25, 50 and 100 mg L-1) to track the time-dependent and dose-dependent effects and compared with its bulk equivalent. In addition, the impacts of FeO NPs and bulk counterpart on cyanobacterial cells were assessed under nitrogen as well as nitrogen-deficient conditions, because of ecological role of cyanobacteria in nitrogen fixation. The study revealed that the highest protein content was observed in the control in both types of BG-11 media compared to treatments of nano and bulk particles of Fe2O3. A 23% reduction in protein in nanoparticle treatment and a 14% reduction in bulk treatment at 100 mg L-1 was observed in BG-11 medium. At same concentration, in BG-110 media, this decline was even more intense with 54% reduction in nanoparticle and a 26% reduction in bulk. Catalytic activity of catalase and superoxide dismutase was found to be linearly correlated with the dose concentration for nano and bulk form in BG-11 as well as BG-110 media. The increased levels of lactate dehydrogenase act as biomarker of the cytotoxicity brought on by nanoparticles. Optical, scanning electron, and transmission electron microscopy all demonstrated the cell entrapment, nanoparticle deposition on the cell surface, cell wall collapse and membrane degradation. A cause for concern is that nanoform was found to be more hazardous than bulk form.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nostoc , Ecosystem , Nanoparticles/toxicity , Proteins , Fresh Water , Nitrogen , Magnetic Iron Oxide Nanoparticles
2.
J Basic Microbiol ; 62(10): 1169-1178, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35778815

ABSTRACT

Light plays a crucial role in photosynthesis, photoperiodism, and photomorphogenesis. Algae have a specialized visual system to perceive the light signal known as eyespot. A typical eyespot is an orange-colored, membranous structure packed with pigmented granules. In algae, the eyespot membrane bears a specialized type of photoreceptors, which shows similarity with animal rhodopsin photoreceptors. This light-sensing receptor is responsible for the photo-mobility response known as phototaxis. In this, light acts as a signal for onset and cascade of downstream signal transduction pathway leading to a conformational change in photoreceptor. This induces the continuous influx of calcium ions through the opening of calcium ion channels leading to membrane depolarization, and beating of flagella which is responsible for phototaxis. Mutational studies have assisted the discovery of eyespot genes, which are involved in eyespot development, assembly, size control, and functioning in Chlamydomonas. These genes belong to photoreceptors (cop1-12, acry, pcry, cry-dash1, cry-dash2, phot, uvr8), eyeless mutants (eye2, eye3), miniature-eyespot mutants (min1, min2), multiple eyespot mutants (mlt1, mlt2). This review discusses the structural biology of eyespots with special reference to Chlamydomonas, molecular insights, related genes, and proteins responsible for its proper functioning.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Animals , Calcium/metabolism , Calcium Channels/metabolism , Chlamydomonas/genetics , Chlamydomonas/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Light , Rhodopsin/metabolism
3.
Front Biosci (Landmark Ed) ; 26(6): 171-190, 2021 05 30.
Article in English | MEDLINE | ID: mdl-34162044

ABSTRACT

Algae possess a considerable potential as bio-refinery for the scale-up production of high-value natural compounds like-carotenoids. Carotenoids are accessory pigments in the light-harvesting apparatus and also act as antioxidants and photo-protectors in green cells. They play important roles for humans, like-precursors of vitamin A, reduce the risk of some cancers, helps in the prevention of age-related diseases, cardiovascular diseases, improve skin health, and stimulates immunity. To date, about 850 types of natural carotenoid compounds have been reported and they have approximated 1.8 billion US$ of global market value. In comparison to land plants, there are few reports on biosynthetic pathways and molecular level regulation of algal carotenogenesis. Recent advances of algal genome sequencing, data created by high-throughput technologies and transcriptome studies, enables a better understanding of the origin and evolution of de novo carotenoid biosynthesis pathways in algae. Here in this review, we focused on, the biochemical and molecular mechanism of carotenoid biosynthesis in algae. Additionally, structural features of different carotenoids are elaborated from a chemistry point of view. Furthermore, current understandings of the techniques designed for pigment extraction from algae are reviewed. In the last section, applications of different carotenoids are elucidated and the growth potential of the global market value of carotenoids are also discussed.


Subject(s)
Carotenoids/isolation & purification , Carotenoids/metabolism , Seaweed/metabolism , Seaweed/classification , Species Specificity
4.
J Basic Microbiol ; 60(9): 738-745, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32515850

ABSTRACT

Differentiation commitment is one of the most complex mechanisms to study in biological science. One of the model systems used for understanding differentiation complexity is heterocyst development in cyanobacteria. Cyanobacteria have the capability of biological nitrogen fixation due to highly differentiated heterocyst cells. Once the nitrogen deficiency signal is perceived by the cyanobacteria, few of its vegetative cells commit toward the development of heterocyst. Heterocyst provides a microoxic environment that is essential for the nitrogenase complex to fix the atmospheric dinitrogen. The entire process of development of heterocyst can be divided into different steps, such as (a) sensing signal and differentiation induction, (b) positional (pattern) determination of heterocyst in the filament, (c) formation of extracellular thick heterocyst-specific layers, and (d) assembly of nitrogen-fixing machinery. Many of the key regulators that are essential for heterocyst formation in these different steps have been identified. Recently, the role of small RNA and interruption DNA elements that influence the heterocyst formation and function has also been identified. In this review article, we have outlined the current understanding of the entire molecular circuit of heterocyst development in a simplistic way. This article focuses on explaining key concepts related to heterocyst development and discusses recent discoveries in this line.


Subject(s)
Cyanobacteria/cytology , Cyanobacteria/genetics , Gene Regulatory Networks , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Metabolic Engineering , Nitrogen/deficiency , Nitrogen/metabolism , Nitrogen Fixation/genetics , Signal Transduction
5.
Biochem Biophys Res Commun ; 480(4): 499-507, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27955725

ABSTRACT

Redesigned Cas9 has emerged as a tool with various applications like gene editing, gene regulation, epigenetic modification and chromosomal imaging. Target specific single guide RNA (sgRNA) can be used with Cas9 for precise gene editing with high efficiency than previously known methods. Further, nuclease-deactivated Cas9 (dCas9) can be fused with activator or repressor for activation (CRISPRa) and repression (CRISPRi) of gene expression, respectively. dCas9 fused with epigenetic modifier like methylase or acetylase further expand the scope of this technique. Fluorescent probes can be tagged to dCas9 to visualize the chromosome. Due to its wide-spread application, simplicity, accessibility, efficacy and universality, this technique is expanding the structural and functional genomic studies of plant and developing CRISPR crops. The present review focuses on current status of using repurposed Cas9 system in these various areas, with major focus on application in plants. Major challenges, concerns and future directions of using this technique are discussed in brief.


Subject(s)
CRISPR-Cas Systems/genetics , Forecasting , Gene Editing/trends , Genome, Plant/genetics , Genomics/trends , Plants/genetics , Genetic Enhancement , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL