Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 481(10): 653-666, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38666590

ABSTRACT

E3 ubiquitin ligase, ring finger protein 138 (RNF138) is involved in several biological processes; however, its role in myeloid differentiation or tumorigenesis remains unclear. RNAseq data from TNMplot showed that RNF138 mRNA levels are highly elevated in acute myeloid leukemia (AML) bone marrow samples as compared with bone marrow of normal volunteers. Here, we show that RNF138 serves as an E3 ligase for the tumor suppressor CCAAT/enhancer binding protein (C/EBPα) and promotes its degradation leading to myeloid differentiation arrest in AML. Wild-type RNF138 physically interacts with C/EBPα and promotes its ubiquitin-dependent proteasome degradation while a mutant RNF-138 deficient in ligase activity though interacts with C/EBPα, fails to down-regulate it. We show that RNF138 depletion enhances endogenous C/EBPα levels in peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. Our data further shows that RNF138-mediated degradation of C/EBPα negatively affects its transactivation potential on its target genes. Furthermore, RNF138 overexpression inhibits all-trans-retinoic acid-induced differentiation of HL-60 cells whereas RNF138 RNAi enhances. In line with RNF138 inhibiting C/EBPα protein turnover, we also observed that RNF138 overexpression inhibited ß-estradiol (E2)-induced C/EBPα driven granulocytic differentiation in C/EBPα inducible K562-p42C/EBPα-estrogen receptor cells. Furthermore, we also recapitulated these findings in PBMCs isolated from AML patients where depletion of RNF138 increased the expression of myeloid differentiation marker CD11b. These results suggest that RNF138 inhibits myeloid differentiation by targeting C/EBPα for proteasomal degradation and may provide a plausible mechanism for loss of C/EBPα expression often observed in myeloid leukemia. Also, targeting RNF138 may resolve differentiation arrest by restoring C/EBPα expression in AML.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Cell Differentiation , Leukemia, Myeloid, Acute , Ubiquitin-Protein Ligases , Humans , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Proteins , Cell Differentiation/genetics , HEK293 Cells , HL-60 Cells , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Proteolysis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
J Cell Physiol ; 239(5): e31217, 2024 May.
Article in English | MEDLINE | ID: mdl-38327035

ABSTRACT

A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 1 Subunit , Osteoblasts , Osteogenesis , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Female , Humans , Mice , Rats , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , HEK293 Cells , Osteoblasts/metabolism , Ovariectomy , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
3.
Steroids ; 198: 109269, 2023 10.
Article in English | MEDLINE | ID: mdl-37394085

ABSTRACT

Activation of the glucocorticoid receptors by its cognate ligand, dexamethasone (DEX) is commonly used as an adjuvant treatment in solid tumors. However, its direct effect on cancerous phenotype is not fully understood. We explored the effect and molecular mechanisms of DEX action in lung cancer. In in vitro experiments, DEX treatment causes decrease in migration, invasion and colony formation ability of A549 cells even at lower doses. DEX also decreased adhesion of A549 cells by reducing the formation of cortical actin. Treatment with RU486, a GR antagonist, indicated that these effects are partially mediated through GR. Further; DEX induces G0/G1 arrest of A549 cells. Mechanistically, DEX induces expression of both CDK inhibitors (p21Cip1, p27Kip1) and cyclin-dependent kinases (CDK4, CDK6). Due to this compensatory activation of CDKs and CDKIs, DEX induces the hyper phosphorylation state of Rb protein (pRb) leading to irreversible senescence as confirmed by ß-gal staining. Next, in clinical dataset of NSCLC (Non-small cell lung cancer), GR was lowly expressed in cancer patients as compared to the normal group, where higher expression of GR led to higher overall survival of NSCLC indicating for a protective role of GR. Interestingly, when combined with chemotherapeutic agents, DEX can modulate the drug-sensitivity of cells. Taken together, these data indicate that DEX through GR activation may suppress tumor growth by decreasing proliferation and inducing irreversible senescence and combination of standard chemotherapy and DEX can be a potential treatment for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Retinoblastoma Protein/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Actins , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Receptors, Glucocorticoid/metabolism
4.
J Cell Biochem ; 124(7): 961-973, 2023 07.
Article in English | MEDLINE | ID: mdl-37204112

ABSTRACT

Adipogenesis, that is, the formation of terminally differentiated adipocytes is intricately regulated by transcription factors where CCAAT/enhancer binding protein alpha (C/EBPα) plays a key role. In the current study, we demonstrate that E3 ubiquitin ligase AIP4 negatively regulates C/EBPα protein stability leading to reduced adipogenesis. While AIP4 overexpression in 3T3-L1 cells preadipocytes inhibited lipid accumulation when treated with differentiation inducing media (MDI), AIP4 depletion was sufficient to partially promote lipid accumulation even in the absence of MDI. Mechanistically, overexpression of AIP4 inhibited protein levels of both ectopically expressed as well as endogenous C/EBPα while catalytically inactive AIP4 failed. On the contrary, AIP4 depletion profoundly enhanced endogenous C/EBPα protein levels. The observation that AIP4 levels decrease with concomitant increase in C/EBPα levels during adipocyte differentiation further indicated that AIP4 negatively regulates C/EBPα levels. We further show that AIP4 physically interacts with C/EBPα and ubiquitinates it leading to its proteasomal degradation. AIP4 promoted K48-linked ubiquitination of C/EBPα while catalytically inactive AIP4-C830A failed. Taken together, our data demonstrate that AIP4 inhibits adipogenesis by targeting C/EBPα for ubiquitin-mediated proteasome degradation.


Subject(s)
Adipogenesis , CCAAT-Enhancer-Binding Protein-alpha , Ubiquitin-Protein Ligases , Ubiquitin , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation , Lipids , PPAR gamma/metabolism , Ubiquitin/metabolism , Proteolysis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...