Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 22(4): 628-35, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15846471

ABSTRACT

PURPOSE: To evaluate the effect of pH on solubility and dissolution rates of a model weak base, haloperidol, and two different salt forms, hydrochloride and mesylate. METHODS: pH-solubility profiles were determined by using haloperidol base, haloperidol hydrochloride, and haloperidol mesylate as starting materials; concentrated or diluted HCl or NaOH solutions were added to aqueous suspensions of solids to adjust pH to desired values. Intrinsic dissolution rates were determined using intrinsic dissolution apparatus under various pH-stat conditions. Further, approximation of diffusion layer pH was estimated from that of 10% w/w slurries of drug substances in dissolution media, which were used to correlate with intrinsic dissolution rates of haloperidol and its salt forms under different pHs. RESULTS: pH-solubility profiles of haloperidol base and its HCl salt were similar, while when the mesylate salt was used as starting material, it exhibited a higher solubility between pH 2 and 5. The higher solubility of the mesylate salt at pH 2-5 is attributed to its higher solubility product (K(sp)) than that of the hydrochloride salt. The pH-solubility profiles indicated a pH(max) (pH of maximum solubility) of approximately 5, indicating that the free base would exist as the solid phase above this pH and a salt would be formed below this pH. Below pH 1.5, all solubilities were comparable due to a conversion of haloperidol base or the mesylate salt to the HCl salt form when HCl was used as the acidifying agent. These were confirmed by monitoring the solid phase by differential scanning calorimeter. When their dissolution rates are tested, dissolution rates of the mesylate salt were much higher than those of the free base or the HCl salt, except at very low pH (<2). Dissolution rates of free base and HCl salt also differed from each other, where that of HCl salt exhibits higher dissolution rates at higher pHs. A direct correlation of dissolution rate with solubility at diffusion layer pH at the surface of dissolving solid was established for haloperidol, its hydrochloride, and mesylate salts. CONCLUSIONS: Using pH-solubility and pH-dissolution rate interrelationships, it has been established that diffusion layer pH could be used to explain the observed rank order in dissolution rates for different salt forms. A non-hydrochloride salt, such as a mesylate salt, may provide advantages over a hydrochloride salt due to its high solubility and lack of common ion effect unless at very low pH.


Subject(s)
Haloperidol/analogs & derivatives , Hydrogen-Ion Concentration , Haloperidol/chemistry , Mesylates/chemistry , Salts , Solubility
2.
J Pharm Sci ; 93(12): 2985-93, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15468328

ABSTRACT

In this study improvement in the bioavailability of carbamazepine (CBZ) prepared as solid dispersions by conventional solvent evaporation and supercritical fluid (SCF) processing methods was assessed, along with the elucidation of the mechanism of improved absorption. Solid dispersions of CBZ in polyethylene glycol (PEG) with either Gelucire 44/14 or vitamin E-TPGS (TPGS) were evaluated by intrinsic dissolution. Directional transport through Caco-2 cell monolayers was determined in the presence and absence of TPGS. Cell viability in presence of various concentrations of amphiphilic carriers was seen. In vivo oral bioavailability was determined in rats. The apparent intrinsic dissolution rates (IDR) of both conventional- and SCF-CBZ/PEG 8000/TPGS solid dispersions were increased by 13- and 10.6-fold, respectively, relative to neat CBZ. CBZ was not a substrate of P-glycoprotein. Higher CBZ permeability was seen in presence of 0.1% TPGS. Cell viability studies showed significant cytotoxicity only at or above 0.1% amphiphilic carrier. Supercritical treated formulation (without amphiphilic carrier) displayed oral bioavailability on par with those conventional solid dispersions augmented with amphiphilic carriers. An in vitro-in vivo correlation was seen between IDR and the AUC of the various CBZ solid dispersions. Bioavailability of CBZ was more a function of dissolution as opposed to membrane effects. Although bioavailability from SCF processed dispersions was better than conventionally processed counterparts (except for one formulation containing Gelucire 44/14), an interaction of processing method and inclusion of an amphiphilic carrier, rather by one factor alone contributed to optimal absorption, thus giving contradictory results for Gelucire 44/14 and TPGS formulations.


Subject(s)
Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Animals , Biological Availability , Caco-2 Cells , Cell Survival/drug effects , Cell Survival/physiology , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Humans , Male , Permeability/drug effects , Rats , Rats, Sprague-Dawley , Solubility/drug effects
3.
Crit Rev Ther Drug Carrier Syst ; 20(2-3): 215-47, 2003.
Article in English | MEDLINE | ID: mdl-14584524

ABSTRACT

Improvement of oral bioavailability of poorly water-soluble drugs remains one of the most challenging aspects of drug development. Solid dispersions seem to be a viable technique for overcoming this problem. However, the practical applicability of these systems has remained limited because of difficulties in conventional methods of preparation, poor reproducibility of physicochemical properties, difficulties in dosage form development, and lack of feasibility for scale-up of manufacturing processes. This review addresses various aspects of solid dispersions and compiles some of the recent technology transfers from various fields such as the chemical, food, and polymer industries for the preparation of solid dispersions that can lead to highly efficient and controlled large-scale manufacturing. Some of the practical aspects to be considered for the preparation of solid dispersions, such as selection of carrier and methods of physicochemical characterization, along with an insight into the release mechanism of drugs are also discussed. Finally, an in-depth rationale for limited commercialization of solid dispersions and recent revival has been considered.


Subject(s)
Drug Delivery Systems/methods , Pharmaceutical Preparations/administration & dosage , Technology, Pharmaceutical/methods , Administration, Oral , Drug Delivery Systems/trends , Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/trends
4.
J Pharm Sci ; 91(9): 1948-57, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12210042

ABSTRACT

Solid dispersions of carbamazepine (CBZ) were formulated by supercritical fluid processing (SCP) and conventional solvent evaporation in polyethylene glycol (PEG) 8000 with either Gelucire 44/14 or vitamin E TPGS NF (d-alpha-tocopheryl PEG 1000 succinate). Formulations were evaluated by dissolution, scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry, and excipient cytotoxicity in Caco-2 cells by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. CBZ release was enhanced from supercritical fluid-treated CBZ and the CBZ/PEG 8000 (1:5), CBZ/PEG 8000/TPGS or Gelucire 44/14 (1:4:1) solid dispersions. The radically altered morphologies of SCP samples seen by scanning electron microscopy suggested polymorphic change that was confirmed by the X-ray diffraction and differential scanning calorimetry. Disappearance of the characteristic CBZ melting peak indicated that CBZ was dissolved inside the carrier system. Polymorphic change of CBZ during SCP led to faster dissolution. Therefore, SCP provides advantages over solid dispersions prepared by conventional processes.


Subject(s)
Anticonvulsants/chemistry , Carbamazepine/chemistry , Anticonvulsants/pharmacology , Caco-2 Cells , Calorimetry, Differential Scanning , Carbamazepine/pharmacology , Carbon Dioxide , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Crystallization , Drug Carriers , Humans , Microscopy, Electron, Scanning , Polyethylene Glycols/toxicity , Solubility , Solvents , Water , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...