Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(9): e45125, 2012.
Article in English | MEDLINE | ID: mdl-22984621

ABSTRACT

The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the "i5k" project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for insects. Thus, we developed an online tool called the Insect Innate Immunity Database (IIID) to provide an open access resource for insect immunity and comparative biology research (http://www.vanderbilt.edu/IIID). The database provides users with simple exploratory tools to search the immune repertoires of five insect models (including Nasonia), spanning three orders, for specific immunity genes or genes within a particular immunity pathway. As a proof of principle, we used an initial database with only four insect models to annotate potential immune genes in the parasitoid wasp genus Nasonia. Results specify 306 putative immune genes in the genomes of N. vitripennis and its two sister species N. giraulti and N. longicornis. Of these genes, 146 were not found in previous annotations of Nasonia immunity genes. Combining these newly identified immune genes with those in previous annotations, Nasonia possess 489 putative immunity genes, the largest immune repertoire found in insects to date. While these computational predictions need to be complemented with functional studies, the IIID database can help initiate and augment annotations of the immune system in the plethora of insect genomes that will soon become available.


Subject(s)
Databases, Genetic , Genes, Insect/genetics , Immunity, Innate/genetics , Insecta/genetics , Animals , Genome, Insect/genetics , Insect Proteins/genetics , Insecta/classification , Internet , Species Specificity , Wasps/classification , Wasps/genetics
2.
PLoS One ; 6(9): e24984, 2011.
Article in English | MEDLINE | ID: mdl-21949820

ABSTRACT

Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that despite the phage's rampant mobility between coinfections, the prophage's genome displays features of constraint related to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate, independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in composition with genes of similar function grouping together, the modules are generally not interchangeable with other unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in phages of obligate intracellular bacteria.


Subject(s)
Bacteriophages/genetics , Evolution, Molecular , Genomics , Wolbachia/genetics , Genes, Bacterial , Genome, Bacterial , Lysogeny , Phylogeny , Recombination, Genetic , Selection, Genetic
3.
J Bioinform Comput Biol ; 8(6): 967-80, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121021

ABSTRACT

We present a method, called BlockMatch, for aligning two blocks, where a block is an RNA multiple sequence alignment with the consensus secondary structure of the alignment in Stockholm format. The method employs a quadratic-time dynamic programming algorithm for aligning columns and column pairs of the multiple alignments in the blocks. Unlike many other tools that can perform pairwise alignment of either single sequences or structures only, BlockMatch takes into account the characteristics of all the sequences in the blocks along with their consensus structures during the alignment process, thus being able to achieve a high-quality alignment result. We apply BlockMatch to phylogeny reconstruction on a set of 5S rRNA sequences taken from fifteen bacteria species. Experimental results showed that the phylogenetic tree generated by our method is more accurate than the tree constructed based on the widely used ClustalW tool. The BlockMatch algorithm is implemented into a web server, accessible at http://bioinformatics.njit.edu/blockmatch. A jar file of the program is also available for download from the web server.


Subject(s)
RNA/genetics , Sequence Alignment/statistics & numerical data , Algorithms , Bacteria/classification , Bacteria/genetics , Computational Biology , Nucleic Acid Conformation , Phylogeny , RNA/chemistry , RNA, Bacterial/genetics , RNA, Ribosomal, 5S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...