Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105714

ABSTRACT

This work investigates the effect of calcium stearate (Ca(C18H35O2)2) on concrete shrinkage behaviors by using experimental testing. The test specimens are cubes with each dimension given as 100 × 100 × 285 mm for shrinkage tests and cylinders with 150 mm diameter and 300 mm height for compressive strength tests. The calcium stearate with fractions of 0, 0.1, 0.2, and 0.3% from the weight of cement are used in the tests. The results showed that the shrinkage occurred in amounts of 0.079, 0.062, 0.065, and 0.060 mm for the specimens containing calcium stearate of 0, 0.1, 0.2, and 0.3%, respectively. Moreover, we also perform shrinkage modelling to explore a possibility to incorporate the calcium stearate fraction into the standard concrete shrinkage model. There are three well-known shrinkage models used here, i.e., the Sakata, the Japan Standard and the Bazant-Baweja models, where only the latter one is capable to capture our experimental results very well for different fractions of calcium stearate.


Subject(s)
Construction Materials , Stearic Acids/chemistry , Compressive Strength , Desiccation , Materials Testing , Models, Theoretical , Oxides/chemistry , Sand/chemistry , Time Factors , Water/chemistry
2.
Materials (Basel) ; 13(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204406

ABSTRACT

This work aims to study the effect of Ca(C18H35O2)2 (calcium stearate) on the properties of concrete by using Portland composite cement (PCC) and fly ash as binders. The calcium stearate content used in the concrete here consists of 0, 1, 5, and 10 kg per m3 of concrete volume, or alternatively, 0 to 2.85% by the weight of cement. We have performed several tests for each of the contents, namely, compressive strength, water absorption, chloride ion infiltration, and accelerated corrosion tests. According to the testing, we have found that with the addition of calcium stearate at 1 kg/m3 in self-compacting concrete (SCC) with 10% fly ash, the mechanical and physical properties of SCC can be improved significantly when compared to the SCC without fly ash and calcium stearate, resulting in a stable compressive strength, lower water absorption, lower chloride ion infiltration, and lower degree of corrosion attack.

SELECTION OF CITATIONS
SEARCH DETAIL