Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nanomaterials (Basel) ; 11(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671783

ABSTRACT

This review summarizes the recent research efforts and developments in nanomaterials for sensing volatile organic compounds (VOCs). The discussion focuses on key materials such as metal oxides (e.g., ZnO, SnO2, TiO2 WO3), conductive polymers (e.g., polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene)), and carbon-based materials (e.g., graphene, graphene oxide, carbon nanotubes), and their mutual combination due to their representativeness in VOCs sensing. Moreover, it delves into the main characteristics and tuning of these materials to achieve enhanced functionality (sensitivity, selectivity, speed of response, and stability). The usual synthesis methods and their advantages towards their integration with microsystems for practical applications are also remarked on. The literature survey shows the most successful systems include structured morphologies, particularly hierarchical structures at the nanometric scale, with intentionally introduced tunable "decorative impurities" or well-defined interfaces forming bilayer structures. These groups of modified or functionalized structures, in which metal oxides are still the main protagonists either as host or guest elements, have proved improvements in VOCs sensing. The work also identifies the need to explore new hybrid material combinations, as well as the convenience of incorporating other transducing principles further than resistive that allow the exploitation of mixed output concepts (e.g., electric, optic, mechanic).

3.
J Colloid Interface Sci ; 580: 30-48, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32679365

ABSTRACT

In the present study, the thermal decomposition of citric acid in the presence of biogenic amine was used to synthesize four different functionalized carbon quantum dots (CQDs), namely, histamine-(HCQDs), putrescine-(PCQDs), cadaverine-(CCQDs) and spermine-(SCQDs). The thermal decomposition of the precursors resulted in a decrease in stability and the formation of surface amides via a cross-linking process between the carboxyl and amine groups. The deposition of biogenic amines was confirmed by a structural characterization of the synthesized CQDs. The resulting CQDs, with a net zero charge, exhibited excellent stability in environments with different pH values. Through a set of different cytotoxicity tests, the absence of gene mutations, apoptosis, necrosis or disruption in cell membranes revealed the high biocompatibility of the CQDs. The antimicrobial activity of the synthesized CQDs was investigated against different bacterial species (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia). We determined the growth kinetics, production of reactive oxygen species (ROS), cell viability and changes in membrane integrity by scanning electron microscopy (SEM). The minimal inhibitory concentrations (MICs) for S. aureus ranged from 3.4 to 6.9 µg/mL. Regarding E.coli and K. pneumonia, all CQD formulations reduced growth, and the MICs were determined for CCQDs and HCQDs (6.9-19.4 µg/mL). The antibacterial activity mechanism was attributed to the oxidative stress generated after CQD treatment, which resulted in the destabilization of the bacterial membrane. The bacterial permeability to propidium iodide indicated a change in membrane integrity, and the effect of CQDs on the morphology of the bacterial cells was evidenced by SEM.


Subject(s)
Quantum Dots , Amines , Anti-Bacterial Agents/pharmacology , Carbon , Staphylococcus aureus
4.
Sensors (Basel) ; 20(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155699

ABSTRACT

Love wave sensors with silver-modified polypyrrole nanoparticles are developed in this work. These systems prove functional at room temperature with enhanced response, sensitivity and response time, as compared to other state-of-the-art surface acoustic wave (SAW) sensors, towards volatile organic compounds (VOCs). Results demonstrate the monitoring of hundreds of ppb of compounds such as acetone, ethanol and toluene with low estimated limits of detection (~3 ppb for acetone). These results are attributed to the use of silver-modified polypyrrole as a second guiding/sensitive layer in the Love wave sensor structure, which provides further chemically active sites for the gas-solid interactions. The sensing of low VOCs concentrations by micro sensing elements as those presented here could be beneficial in future systems for air quality control, food quality control or disease diagnosis via exhaled breath as the limits of detection obtained are within those required in these applications.


Subject(s)
Biosensing Techniques/instrumentation , Nanoparticles/chemistry , Polymers/chemistry , Pyrroles/chemistry , Silver/chemistry , Volatile Organic Compounds/analysis , Calibration , Electricity , Gases/chemistry , Nanoparticles/ultrastructure
5.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150985

ABSTRACT

Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122 to 135 and 145 for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.

6.
Sci Rep ; 9(1): 8465, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186461

ABSTRACT

Polypyrrole (PPy) nanorods (NRs) and nanoparticles (NPs) are synthesized via electrochemical and chemical methods, respectively, and tested upon ammonia exposure using Raman and X-ray photoelectron spectroscopy (XPS). Characterization of both nanomaterials via Raman spectroscopy demonstrates the formation of PPy, displaying vibration bands consistent with the literature. Additionally, XPS reveals the presence of neutral PPy species as major components in PPy NRs and PPy NPs, and other species including polarons and bipolarons. Raman and XPS analysis after ammonia exposure show changes in the physical/chemical properties of PPy, confirming the potential of both samples for ammonia sensing. Results demonstrate that the electrochemically synthesized NRs involve both proton and electron transfer mechanisms during ammonia exposure, as opposed to the chemically synthesized NPs, which show a mechanism dominated by electron transfer. Thus, the different detection mechanisms in PPy NRs and PPy NPs appear to be connected to the particular morphological and chemical composition of each film. These results contribute to elucidate the mechanisms involved in ammonia detection and the influence of the synthesis routes and the physical/chemical characteristics of PPy.

7.
Biosensors (Basel) ; 8(4)2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30477177

ABSTRACT

Gas sensitive cerium oxide-tungsten oxide core-shell nanowires are synthesized and integrated directly into micromachined platforms via aerosol assisted chemical vapor deposition. Tests to various volatile organic compounds (acetone, ethanol, and toluene) involved in early disease diagnosis demonstrate enhanced sensitivity to acetone for the core-shell structures in contrast to the non-modified materials (i.e., only tungsten oxide or cerium oxide). This is attributed to the high density of oxygen vacancy defects at the shell, as well as the formation of heterojunctions at the core-shell interface, which provide the modified nanowires with 'extra' chemical and electronic sensitization as compared to the non-modified materials.


Subject(s)
Acetone/metabolism , Cerium/chemistry , Nanowires/chemistry , Oxides/chemistry , Tungsten/chemistry , Volatile Organic Compounds/metabolism
8.
Sensors (Basel) ; 17(3)2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28287435

ABSTRACT

The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

SELECTION OF CITATIONS
SEARCH DETAIL
...