Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hosp Infect ; 122: 27-34, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34942201

ABSTRACT

OBJECTIVES: The first large nosocomial cluster of coronavirus disease 2019 (COVID-19) in Singapore in April 2021 led to partial closure of a major acute care hospital. This study examined factors associated with infection among patients, staff and visitors; investigated the possible role of aerosol-based transmission; evaluated the effectiveness of BNT162.b2 and mRNA1273 vaccines; and described the successful containment of the cluster. METHODS: Close contacts of patients with COVID-19 and the affected ward were identified and underwent surveillance for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Patient, staff and visitor cohorts were constructed and factors associated with infection were evaluated. Phylogenetic analysis of patient samples was performed. Ward air exhaust filters were tested for SARS-CoV-2. RESULTS: In total, there were 47 cases, comprising 29 patients, nine staff, six visitors and three household contacts. All infections were of the Delta variant. Ventilation studies showed turbulent air flow and swabs from air exhaust filters were positive for SARS-CoV-2. Vaccine breakthrough infections were seen in both patients and staff. Among patients, vaccination was associated with a 79% lower odds of infection with COVID-19 (adjusted odds ratio 0.21, 95% confidence interval 0.05-0.95). CONCLUSIONS: This cluster occurred despite enhancement of infection control measures that the hospital had undertaken at the onset of the COVID-19 pandemic. It was brought under control rapidly through case isolation, extensive contact tracing and quarantine measures, and led to enhanced use of hospital personal protective equipment, introduction of routine rostered testing of inpatients and staff, and changes in hospital infrastructure to improve ventilation within general wards.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , COVID-19/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Disease Outbreaks , Hospitals , Humans , Pandemics/prevention & control , Phylogeny , SARS-CoV-2/genetics , Singapore/epidemiology
2.
Mater Today Adv ; 11: 100148, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34179746

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic had caused a severe depletion of the worldwide supply of N95 respirators. The development of methods to effectively decontaminate N95 respirators while maintaining their integrity is crucial for respirator regeneration and reuse. In this study, we systematically evaluated five respirator decontamination methods using vaporized hydrogen peroxide (VHP) or ultraviolet (254 nm wavelength, UVC) radiation. Through testing the bioburden, filtration, fluid resistance, and fit (shape) of the decontaminated respirators, we found that the decontamination methods using BioQuell VHP, custom VHP container, Steris VHP, and Sterrad VHP effectively inactivated Cardiovirus (3-log10 reduction) and bacteria (6-log10 reduction) without compromising the respirator integrity after 2-15 cycles. Hope UVC system was capable of inactivating Cardiovirus (3-log10 reduction) but exhibited relatively poorer bactericidal activity. These methods are capable of decontaminating 10-1000 respirators per batch with varied decontamination times (10-200 min). Our findings show that N95 respirators treated by the previously mentioned decontamination methods are safe and effective for reuse by industry, laboratories, and hospitals.

3.
J Gen Virol ; 93(Pt 9): 1965-1975, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22764317

ABSTRACT

The pre-membrane protein (prM) of West Nile virus (WNV) functions as a chaperone for correct folding of the envelope (E) protein, and prevents premature fusion during virus egress. However, little is known about its role in virulence. To investigate this, we compared the amino acid sequences of prM between a highly virulent North American strain (WNV(NY99)) and a weakly virulent Australian subtype (WNV(KUN)). Five amino acid differences occur in WNV(NY99) compared with WNV(KUN) (I22V, H43Y, L72S, S105A and A156V). When expressed in mammalian cells, recombinant WNV(NY99) prM retained native antigenic structure, and was partially exported to the cell surface. In contrast, WNV(KUN) prM (in the absence of the E protein) failed to express a conserved conformational epitope and was mostly retained at the pre-Golgi stage. Substitutions in residues 22 (Ile to Val) and 72 (Leu to Ser) restored the antigenic structure and cell surface expression of WNV(KUN) prM to the same level as that of WNV(NY99), and enhanced the secretion of WNV(KUN) prME particles when expressed in the presence of E. Introduction of the prM substitutions into a WNV(KUN) infectious clone (FLSDX) enhanced the secretion of infectious particles in Vero cells, and enhanced virulence in mice. These findings highlight the role of prM in viral particle secretion and virulence, and suggest the involvement of the L72S and I22V substitutions in modulating these activities.


Subject(s)
Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Release , West Nile Fever/virology , West Nile virus/physiology , West Nile virus/pathogenicity , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Female , Mice , Molecular Sequence Data , Protein Transport , Viral Envelope Proteins/genetics , Virulence , Virus Replication , West Nile virus/chemistry , West Nile virus/genetics
4.
J Virol Methods ; 175(1): 20-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21545809

ABSTRACT

Previous studies have concluded that the Flavivirus prM protein is a suitable viral antigen to distinguish serologically between infections with closely related Flaviviruses (Cardosa et al., 2002). To express the recombinant West Nile virus (WNV) prM antigen fused to a suitable affinity tag for purification, a series of prM-His-tag and prM-V5-tag fusion proteins were generated. Analysis of the prM-His-tag fusion proteins revealed that either prM epitopes were disrupted or the His-tag was not presented properly depending on the location of the His tag and the presence of the prM transmembrane domains in these constructs. This identified domains critical for proper folding of prM, and arrangements that allowed the correct presentation of the His-tag. However, the inclusion of the V5 epitope tag fused to the C terminus of prM allowed formation of the authentic antigenic structure of prM and the proper presentation of the V5 epitope. Capture of tagged recombinant WNV(NY99) prM antigen to the solid phase with anti-V5 antibody in ELISA enabled the detection of prM-specific antibodies in WNV(NY99)-immune horse serum, confirming its potential as a useful diagnostic reagent.


Subject(s)
Affinity Labels/analysis , Viral Envelope Proteins/immunology , West Nile Fever/immunology , West Nile virus/immunology , Aedes , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Horses/immunology , Immune Sera , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/genetics , Viral Proteins/immunology , Viral Structural Proteins/immunology , West Nile Fever/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...