Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Brain ; 13(1): 60, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32290851

ABSTRACT

The roles of serotonergic and noradrenergic signaling in nociceptive processing in the central nervous system are well known. However, dopaminergic signaling is also relevant to various physical functions, including nociception. The zona incerta is a subthalamic nucleus in which the A13 dopaminergic cell group resides, but how this A13 group affects nociceptive processing remains unknown. Recently, we showed that acute nociceptive stimuli rapidly induce the activity of A10 (ventral tegmental area) dopamine neurons via fiber photometry. In this study, we measured the activity of A13 dopaminergic neurons in response to acute nociceptive stimuli using the same system. Adeno-associated viruses (AAV-CAG-FLEX-G-CaMP6 and AAV-CAG-FLEX-mCherry) were unilaterally injected into the A13 site in transgenic mice carrying a dopamine transporter promotor-regulated Cre recombinase transgene to specifically introduce G-CaMP6/mCherry into A13 dopaminergic cell bodies through site-specific infection. We measured G-CaMP6/mCherry fluorescence intensity in the A13 site to acute nociceptive stimuli (pinch stimulus and heat stimulus). These stimuli significantly induced a rapid increase in G-CaMP6 fluorescence intensity, but non-nociceptive control stimuli did not. In contrast, mCherry fluorescence intensity was not significantly changed by nociceptive stimuli or non-nociceptive stimuli. Our finding is the first report to measure the activity of A13 dopaminergic neurons to aversive stimuli. A13 dopaminergic neurons project to the periaqueductal gray and the central nucleus of the amygdala, which are both well known as key regions in nociceptive processing. Therefore, together with our A10 study, our results indicate that A13 dopaminergic neurons play important roles in nociceptive processing.


Subject(s)
Dopaminergic Neurons/metabolism , Nociception , Photometry , Zona Incerta/metabolism , Animals , Fluorescence , Mice , Wakefulness
2.
Mol Brain ; 13(1): 14, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005128

ABSTRACT

Nociception is important perception that has harmful influence on daily life of humans. As to main pain management system, some descending pathways are called descending antinociceptive systems (DAS). As main pathways of DAS, it is well known that dorsal raphe (B6/B7) - rostral ventromedial medulla (B3) - spinal dorsal horn includes serotonergic system. However, possible role of supralemniscal (B9) serotonin (5-HT) cell group in pain management is still open question. In this study, we measured activities of B9 5-HT neuronal cell bodies and B9 5-HT neuron-derived axons located in the locus coeruleus (LC) and ventral tegmental area (VTA), which are also main players of pain management, using fiber photometry system. We introduced the G-CaMP6 in B9 5-HT neurons using transgenic mice carrying a tetracycline-controlled transactivator transgene (tTA) under the control of a tryptophan hydroxylase-2 (TPH2) promoter and site-specific injection of adeno associated virus (AAV-TetO(3G)-G-CaMP6). After confirmation of specific expression of G-CaMP6 in the target population, G-CaMP6 fluorescence intensity in B9 group and LC/VTA groups was measured in awake mice exposed to acute tail pinch and heat stimuli. G-CaMP6 fluorescence intensity rapidly increased by both stimuli in all groups, but not significantly reacted by nonnociceptive control stimuli. The present results clearly indicate that acute nociceptive stimuli cause a rapid increase in the activities of B9-LC/B9-VTA 5-HTergic pathways, suggesting that B9 5-HT neurons play important roles in nociceptive processing.


Subject(s)
Nociception/physiology , Pons/physiology , Serotonergic Neurons/physiology , Animals , Dependovirus/genetics , Efferent Pathways/physiology , Fiber Optic Technology/methods , Genes, Reporter , Genes, Synthetic , Green Fluorescent Proteins/genetics , Hot Temperature , Locus Coeruleus/physiology , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Photometry/methods , Pressure , Reaction Time , Recombinant Fusion Proteins/genetics , Serotonergic Neurons/chemistry , Trans-Activators , Tryptophan Hydroxylase/genetics , Ventral Tegmental Area/physiology , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL