Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 157(22): 224305, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546816

ABSTRACT

Vibrational relaxation of H2O(v2,v13) molecules by collisions with Ar was studied at 298 K (v2 denotes the bending vibrational mode and v13 denotes the sum of the symmetric, v1, and asymmetric, v3, vibrational modes). The H2O molecules from 14 different exothermic reactions of H-atom abstraction by OH radicals were observed by infrared emission from a fast flow reactor as a function of Ar pressure and reaction time. Numerical kinetic calculations were used to obtain rate constants for stretch-to-bend energy conversion, (v2,v13) → (v2 + 2,v13 - 1), and pure bend relaxation, (v2,v13) → (v2 - 1,v13). Rate constants for states up to v13 = 4 were based on the average values from all reactions. The rate constant for the (2,0) → (1,0) bending relaxation is in agreement with the published values from laser-induced fluorescent experiments; the rate constants for higher levels increase with v2. Our average rate constant for the (0,1) → (2,0) stretch-to-bend conversion is somewhat smaller but falls within the uncertainty limit of the published value. The average rate constants for the stretch-to-bend process for (01), (02), (03), and (04) stretching states are (4.3 ± 0.8) × 10-14, (7.7 ± 1.1) × 10-14, (14.3 ± 4.2) × 10-14, and (20.6 ± 6.2) × 10-14 cm3 molecule-1 s-1, respectively.

2.
J Phys Chem A ; 123(13): 2621-2633, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30841697

ABSTRACT

The gas-phase unimolecular reactions of C2D5CHFCl molecules with 94 kcal mol-1 of vibrational energy have been studied by the chemical-activation experimental technique and by electronic-structure computations. Products from the reaction of C2D5CHFCl molecules, formed by the recombination of C2D5 and CHFCl radicals in a room temperature bath gas, were measured by gas chromatography-mass spectrometry. The 2,1-DCl (81%) and 1,1-HCl (17%) elimination reactions are the principal processes, but 2,1-DF and 1,1-HF elimination reactions also are observed. Comparison of experimental rate constants to calculated statistical rate constants provides threshold energies. The potential surfaces associated with C2D5(F)C: + HCl and C2D5(Cl)C: + HF reactions are of special interest because hydrogen-bonded adducts with HCl and HF with dissociation energies of 6.4 and 9.3 kcal mol-1, respectively, are predicted by calculations. The relationship between the geometries and threshold energies of transition states for 1,1-HCl elimination and carbene:HCl adducts is complex, and previous studies of related molecules, such as CD3CHFCl, CD2ClCHFCl, C2D5CHCl2, and halogenated methanes are included in the computational analysis. Extensive calculations for CH3CHFCl as a model for 1,1-HCl reactions illustrate properties of the exit-channel potential energy surface. Since the 1,1-HCl transition state is submerged relative to dissociation of the adduct, inner and outer transition states should be considered for analysis of rate constants describing 1,1-HCl elimination and addition reactions of carbenes to HCl.

3.
J Phys Chem A ; 122(43): 8446-8457, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30261723

ABSTRACT

The five unimolecular HX and DX (X = F, Cl) elimination pathways of CD2ClCHFCl* were examined using a chemical activation technique; the molecules were generated with 92 kcal mol-1 of vibrational energy in a room-temperature bath gas by a combination of CD2Cl and CHFCl radicals. The total unimolecular rate constant was 9.7 × 107 s-1, and branching fractions for each channel were 0.52 (2,1-DCl), 0.29 (1,1-HCl), 0.10 (2,1-DF), 0.07 (1,1-HF), and 0.02 (1,2-HCl). Comparison of the individual experimental rate constants to calculated statistical rate constants gave threshold energies for each process as 63, 72, 66, 73, and 70 kcal mol-1, listed in the same order as the branching fractions. The 1,1-HCl and 1,1-HF reactions gave carbenes, CD2Cl(F)C: and CD2Cl(Cl)C:, respectively, as products, which have hydrogen-bonded complexes with HCl or HF in the exit channel of the potential energy surface. These carbenes have energy in excess of the threshold energy for D atom migration to give CDCl═CDF and CDCl═CDCl, and the subsequent cis-trans isomerization rates of the dihaloethenes can provide information about energy disposal by the 1,1-HX elimination reactions. Electronic structure calculations provide information for transition states of CD2ClCHFCl and hydrogen-bonded complexes of carbenes with HF and HCl. In addition, D atom migration in both free carbenes and in complexes formed by the carbene hydrogen bonding to HCl or HF is explored.

4.
J Phys Chem A ; 122(15): 3735-3746, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29614222

ABSTRACT

Reactions of OH and OD radicals with NH2CHO and ND2CHO were studied by Fourier transform infrared emission spectroscopy of the product molecules from a fast-flow reactor at 298 K. Vibrational distributions of the HOD and H2O molecules from the primary reactions with the C-H bond were obtained by computer simulation of the emission spectra. The vibrational distributions resemble those for other direct H atom abstraction reactions, such as with acetaldehyde. The highest observed level gives an estimate of the C-H bond dissociation energy in formamide of 90.5 ± 1.3 kcal mol-1. Observation of CO2, ammonia, and secondary water chemiluminescence gave evidence that recombination of OH and NH2CO forms carbamic acid (NH2COOH) with excitation energy of 103 kcal mol-1, which decomposes through two pathways forming either NH3 + CO2 or H2O + HNCO. The branching fraction for ammonia formation was estimated to be 2-3 times larger than formation of water. This observation was confirmed by RRKM calculation of the decomposition rate constants. A new simulation method was developed to analyze infrared emission from NH3, NH2D, ND2H, and ND3. Dynamical aspects of the primary and secondary reactions are discussed based on the vibrational distributions of CO2 and those of H/D isotopes of water and ammonia.

5.
J Phys Chem A ; 121(46): 8746-8756, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-28926250

ABSTRACT

The recombination of CF3 and CHF2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF3CHF2* molecules with 101 kcal mol-1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF3, CF3(F)C: and C2F4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF3(F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 104, 4.7 × 104, and 1.1 × 104 s-1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E0) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol-1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF3(F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol-1. Hydrogen-bonded complexes between HF and the H atom migration transition state of CH3(F)C: and the F atom migration transition state of CF3(F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.

6.
J Phys Chem A ; 120(47): 9357-9362, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27798960

ABSTRACT

The recombination of ·CHF2 radicals in a room-temperature bath gas was used to generate CHF2CHF2* (where * indicates vibrational excitation) molecules with 96 kcal mol-1 of vibrational energy. The CHF2CHF2* molecules decompose by four-centered 1,2-HF elimination and by three-centered 1,1-HF elimination reactions to give HF and either CHF═CF2 or :CFCHF2, respectively. The 1,1-HF component was identified by trapping the :CFCHF2 carbene with trans-2-butene that forms 1-fluoro-1-difluoromethyl-2,3-dimethylcyclopropane. The total rate constant for the decomposition of CHF2CHF2* was 6.0 × 105 s-1, and the rate constant for the 1,1-HF pathway forming the carbene, as measured by the 1-fluoro-1-difluoromethyl-2,3-dimethylcyclopropane yield, was 1.4 × 105 s-1. On the basis of matching the experimental rate constants to calculated statistical rate constants, the threshold energies for the four-centered and three-centered reactions are 78 and ≤85 kcal mol-1, respectively.

7.
J Phys Chem A ; 120(42): 8244-8253, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27690445

ABSTRACT

Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD═CHCl and CD3CD═CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD═CDCl under the conditions of the experiments. The experimental rate constants were 2.7 × 107 and 0.47 × 107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 × 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. On the basis of the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2ClCHCl2 molecules with 86 kcal mol-1 of energy to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.

8.
J Phys Chem A ; 120(34): 6698-711, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27504785

ABSTRACT

Reactions of OH and OD radicals with (CH3)3N, (CH3)2NH, and CH3NH2 were studied by Fourier transform infrared emission spectroscopy (FTIR) of the water product molecules from a fast-flow reactor at 298 K. The rate constants (4.4 ± 0.5) × 10(-11), (5.2 ± 0.8) × 10(-11), and (2.0 ± 0.4) × 10(-11) cm(3) molecule(-1) s(-1) were determined for OD + (CH3)3N, (CH3)2NH, and CH3NH2, respectively, by comparing the HOD emission intensities to the HOD intensity from the OD reaction with H2S. Abstraction from the nitrogen site competes with abstraction from the methyl group, as obtained from an analysis of the HOD and D2O emission intensities from the OD reactions with the deuterated reactants, (CD3)2NH and CD3NH2. After adjustment for the hydrogen-deuterium kinetic isotope effect, the product branching fractions of the hydrogen abstraction from the nitrogen for di- and monomethylamine were found to be 0.34 ± 0.04 and 0.26 ± 0.05, respectively. Vibrational distributions of the H2O, HOD, and D2O molecules are typical for direct hydrogen atom abstraction from polar molecules, even though activation energies are negative because of the formation of pre-transition-state complexes. Comparison is made to the reactions of hydroxyl radicals with ammonia and with other compounds with primary C-H bonds to discuss specific features of disposal of energy to water product.

9.
J Phys Chem A ; 119(36): 9441-51, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26291380

ABSTRACT

Vibrationally excited CD3CHFCl molecules with 96 kcal mol(-1) of energy were generated by the recombination of CD3 and CHFCl radicals in a room-temperature bath gas. The four competing unimolecular decomposition reactions, namely, 1,1-HCl and 1,2-DCl elimination and 1,1-HF and 1,2-DF elimination, were observed, and the individual rate constants were measured. The product branching fractions are 0.60, 0.27, 0.09, and 0.04 for 1,2-DCl, 1,1-HCl, 1,2-DF, and 1,1-HF elimination, respectively. Electronic structure calculations were used to define models of the four transition states. The statistical rate constants calculated from these models were compared to the experimental rate constants. The assigned threshold energies with ±2 kcal mol(-1) uncertainty are 60, 72, 65, and 74 kcal mol(-1) for the 1,2-DCl, 1,1-HCl, 1,2-DF, and 1,1-HF reactions, respectively. The loose structure of the 1,1-HX transition states, which is exemplified by the order of magnitude larger pre-exponential factor relative to the 1,2-HX elimination reactions, compensates for the high threshold energy; thus, the 1,1-HX elimination reaction rates can compete with the 1,2-HX elimination reactions for high levels of vibrational excitation in CD3CHFCl. The 1,1-HCl and 1,1-HF reactions are observed via the CD2═CDF and CD2═CDCl products formed from isomerization of the CD3CF and CD3CCl carbenes. These D-atom migration reactions are discussed, and the possibility of tunneling is evaluated. The transition states developed from the 1,1-HCl and 1,1-HF reactions of CD3CHFCl are compared to models for the HCl and HF elimination reactions of CHF2Cl, CHFCl2, and CH2FCl.

10.
J Phys Chem A ; 119(17): 3887-96, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25850812

ABSTRACT

The recombination of CHF2 and C2D5 radicals was used to produce CD3CD2CHF2* molecules with 96 kcal mol(-1) of vibrational energy in a room temperature bath gas. The formation of CD3CD═CHF and CD3CD═CDF was used to identify the 1,2-DF and 1,1-HF unimolecular elimination channels; CD3CD═CDF is formed by isomerization of the singlet-state CD3CD2CF carbene. The total unimolecular rate constant is 1.6 × 10(6) s(-1), and the branching ratio for 1,1-HF elimination is 0.25. Threshold energies of 64 ± 2 and 73 ± 2 kcal mol(-1) were assigned to the 1,2-DF and 1,1-HF reaction channels. The E and Z isomers of 1-fluoropropene were observed for each reaction; approximately 30% of the CD3CD═CDF molecules derived from 1,1-HF elimination retained enough energy to undergo cis-trans isomerization. Electronic structure calculations with density-functional theory were used to characterize the transition-state structures and the H atom migration barrier for CD3CD2CF. Adjustment of the rate constants to account for kinetic-isotope effects suggest that the branching ratio would be 0.20 for 1,1-HF elimination from C2H5CHF2. The results from an earlier study of CD3CHF2 and CH3CHF2 are also reinterpreted to assign a threshold energy of 74 kcal mol(-1) for the 1,1-HF elimination reaction. Because CHF2CHF2* is generated in the photolysis system, the 1,1-and 1,2-HF-elimination reactions of CHF2CHF2* are discussed. The 1,1-HF channel was identified by trapping the CF2HCF carbene with cis-butene-2.

11.
J Phys Chem A ; 118(40): 9347-56, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25203415

ABSTRACT

The recombination of CCl3 radicals with CH3, CH3CH2, and CF3CH2 radicals was used to generate CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3 molecules with approximately 87 kcal mol(-1) of vibrational energy in a bath gas at room temperature. The competition between collisional deactivation and unimolecular reaction by HCl elimination was used to obtain the experimental rate constants for each molecule. These experimental rate constants were matched to calculated statistical unimolecular rate constants to assign threshold energies to the three HCl elimination reactions. The models needed for the calculations of the rate constants were obtained from molecular structure calculations using density functional theory (DFT) with the hybrid density-functional MO6-2X recommended by Truhlar for transition states. The assigned threshold energies are 52 ± 2, 50 ± 2, and 52 ± 2 kcal mol(-1) for CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3, respectively, and the CH3 and CF3 groups have only a minor effect on the threshold energies for HCl elimination. The DFT calculated threshold energies are in agreement with the experimentally assigned values. The addition of Cl atoms to the same carbon atom lowers the threshold energy for HCl elimination in the CH3CH2Cl, CH3CHCl2, and CH3CCl3 series. This trend, which is the opposite of that for CH3CH2F, CH3CHF2, and CH3CF3, is discussed in terms of transition-state structure and correlated with the relative stabilities of CH3CH2(+), CH3CHCl(+), and CH3CCl2(+) ions; the relative stabilities are based on the hydride affinities obtained from calculations. Comparison of the reactions of CH3CCl3 and CH2ClCHCl2 shows that the threshold energy is much higher for the isomer with chlorine atoms on both carbon atoms.

12.
J Phys Chem A ; 118(16): 2886-96, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24654826

ABSTRACT

The recombination reactions of CH2Cl radicals with CF3CHF and with CH3CHF radicals were used to generate CF3CHFCH2Cl and CH3CHFCH2Cl molecules with 90-92 kcal mol(-1) of vibrational energy. The experimental rate constants for elimination of HCl and HF and the interchange of Cl and F atoms were measured and compared to RRKM calculated rate constants to assign the threshold energy for each unimolecular reaction channel. The Cl/F interchange reaction is approximately 18% of the total unimolecular reaction for both molecules. The product branching ratios and some rate constants also could be measured for the unimolecular reactions of the rearranged molecules, CF3CHClCH2F and CH3CHClCH2F. The most important result is that the CH3 group lowers the threshold for Cl/F interchange relative to CH2FCD2Cl, as expected for an electron-density donating group, and the CF3 group, an electron-density withdrawing group, increases the threshold energy relative to CH2FCD2Cl. The CH3 and CF3 groups alter the threshold energies of the HCl and HF elimination reactions in such a way so as to maintain the same branching fraction for the interchange reaction. The results from density functional theory using the B3PW91 method with the 6311+G(2d,p) and G-31G(d',p') basis sets are used to discuss the trends in threshold energies for the Cl/F interchange and the HF and HCl elimination reactions.

13.
J Phys Chem A ; 117(31): 6717-23, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23837645

ABSTRACT

The room-temperature gas-phase recombination of CH2F and CD2Cl radicals was used to prepare CH2FCD2Cl molecules with 91 kcal mol(-1) of vibrational energy. Three unimolecular processes are in competition with collisional deactivation of CH2FCD2Cl; HCl and DF elimination to give CHF═CD2 and CH2═CDCl plus isomerization to give CH2ClCD2F by the interchange of F and Cl atoms. The Cl/F interchange reaction was observed, and the rate constant was assigned from measurement of CHCl═CD2 as a product, which is formed by HF elimination from CH2ClCD2F. These experiments plus previously published results from chemically activated CH2ClCH2F and electronic structure and RRKM calculations for the kinetic-isotope effects permit assignment of the three rate constants for CH2FCD2Cl (and for CH2ClCD2F). The product branching ratio for the interchange reaction versus elimination is 0.24 ± 0.04. Comparison of the experimental rate constant with the RRKM calculated rate constant permitted the assignment of a threshold energy of 62 ± 3 kcal mol(-1) for this type-1 dyotropic rearrangement. On the basis of electronic structure calculations, the nature of the transition state for the rearrangement reaction is discussed. The radical recombination reactions in the chemical system also generate vibrationally excited CD2ClCD2Cl and CH2FCH2F molecules, and the rate constants for DCl and HF elimination were measured in order to confirm that the photolysis of CD2ClI and (CH2F)2CO mixtures was giving reliable data for CH2FCD2Cl.

14.
Chemphyschem ; 13(3): 869-78, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22287121

ABSTRACT

The recombination of CF(2)Cl with CH(2)Cl and CFCl(2) with CH(2)F were employed to generate CF(2)ClCH(2)Cl* and CFCl(2)CH(2)F* molecules with 381 and 368 kJ mol(-1), respectively, of vibrational energy in a room-temperature bath gas. The unimolecular reactions of these molecules, which include HCl elimination, HF elimination, and isomerisation by interchange of chlorine and fluorine atoms, were characterized. The three rate constants for CFCl(2)CH(2)F were 2.9×10(7), 0.87×10(7) and 0.04×10(7) s(-1) for HCl elimination, isomerisation and HF elimination, respectively. The isomerisation reaction must be included to have a complete characterization of the unimolecular kinetics of CFCl(2)CH(2)F. The rate constants for HCl elimination and HF elimination from CF(2)ClCH(2)Cl were 14×10(7) and 0.37×10(7) s(-1), respectively. Isomerisation that has a rate constant less than 0.08×10(7) s(-1) is not important. These experimental rate constants were matched to calculated statistical rate constants to assign threshold energies, which are 264, 268, and 297 kJ mol(-1), respectively, for isomerisation, HCl elimination, and HF elimination for CFCl(2)CH(2)F and 314, 251, and 289 kJ mol(-1) in the same order for CF(2)ClCH(2)Cl. Density functional theory was used to evaluate the models that were needed for the statistical rate constants; the computational method was B3PW91/6-31G(d',p'). Threshold energies for the unimolecular reactions of CF(2)ClCH(2)Cl and CFCl(2)CH(2)F are compared to those for CF(2)ClCH(3) and CFCl(2)CH(3) to illustrate the elevation of threshold energies by F- or Cl-atom substitution at the beta carbon atom (identified by C(H)). The DFT calculations systematically underestimate the threshold energy for HCl elimination.

15.
J Phys Chem A ; 115(6): 1054-62, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21244059

ABSTRACT

The recombination of CF(2)Cl and CH(2)F radicals was used to prepare CF(2)ClCH(2)F* molecules with 93 ± 2 kcal mol(-1) of vibrational energy in a room temperature bath gas. The observed unimolecular reactions in order of relative importance were: (1) 1,2-ClH elimination to give CF(2)═CHF, (2) isomerization to CF(3)CH(2)Cl by the interchange of F and Cl atoms and (3) 1,2-FH elimination to give E- and Z-CFCl═CHF. Since the isomerization reaction is 12 kcal mol(-1) exothermic, the CF(3)CH(2)Cl* molecules have 105 kcal mol(-1) of internal energy and they can eliminate HF to give CF(2)═CHCl, decompose by rupture of the C-Cl bond, or isomerize back to CF(2)ClCH(2)F. These data, which provide experimental rate constants, are combined with previously published results for chemically activated CF(3)CH(2)Cl* formed by the recombination of CF(3) and CH(2)Cl radicals to provide a comprehensive view of the CF(3)CH(2)Cl* ↔ CF(2)ClCH(2)F* unimolecular reaction system. The experimental rate constants are matched to calculated statistical rate constants to assign threshold energies for the observed reactions. The models for the molecules and transition states needed for the rate constant calculations were obtained from electronic structures calculated from density functional theory. The previously proposed explanation for the formation of CF(2)═CHF in thermal and infrared multiphoton excitation studies of CF(3)CH(2)Cl, which was 2,2-HCl elimination from CF(3)CH(2)Cl followed by migration of the F atom in CF(3)CH, should be replaced by the Cl/F interchange reaction followed by a conventional 1,2-ClH elimination from CF(2)ClCH(2)F. The unimolecular reactions are augmented by free-radical chemistry initiated by reactions of Cl and F atoms in the thermal decomposition of CF(3)CH(2)Cl and CF(2)ClCH(2)F.

16.
J Phys Chem A ; 114(38): 10395-402, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20809644

ABSTRACT

The recombination of chloromethyl and t-butyl radicals at room temperature was used to generate neopentyl chloride molecules with 89 kcal mol(-1) of internal energy. The observed unimolecular reactions, which give 2-methyl-2-butene and 2-methyl-1-butene plus HCl, as products, are explained by a mechanism that involves the interchange of a methyl group and the chlorine atom to yield 2-chloro-2-methylbutane, which subsequently eliminates hydrogen chloride by the usual four-centered mechanism to give the observed products. The interchange isomerization process is the rate-limiting step. Similar experiments were done with CD(2)Cl and C(CH(3))(3) radicals to measure the kinetic-isotope effect to help corroborate the proposed mechanism. Density functional theory was employed at the B3PW91/6-31G(d',p') level to verify the Cl/CH(3) interchange mechanism and to characterize the interchange transition state. These calculations, which provide vibrational frequencies and moments of inertia of the molecule and transition state, were used to evaluate the statistical unimolecular rate constants. Matching the calculated and experimental rate constants, gave 62 ± 2 kcal mol(-1) as the threshold energy for interchange of the Cl atom and a methyl group. The calculated models also were used to reinterpret the thermal unimolecular reactions of neopentyl chloride and neopentyl bromide. The previously assumed Wagner-Meerwein rearrangement mechanism for these reactions can be replaced by a mechanism that involves the interchange of the halogen atom and a methyl group followed by HCl or HBr elimination from 2-chloro-2-methylbutane and 2-bromo-2-methylbutane. Electronic structure calculations also were done to find threshold energies for several related molecules, including 2-chloro-3,3-dimethylbutane, 1-chloro-2-methyl-2-phenylpropane, and 1-chloro-2-methyl-2-vinylpropane, to demonstrate the generality of the interchange reaction involving a methyl, or other hydrocarbon groups, and a chlorine atom. The interchange of a halogen atom and a methyl group located on adjacent carbon atoms can be viewed as an extension of the halogen atom interchange mechanisms that is common in 1,2-dihaloalkanes.


Subject(s)
Hydrocarbons, Brominated/chemistry , Hydrocarbons, Chlorinated/chemistry , Molecular Dynamics Simulation , Molecular Structure , Stereoisomerism
17.
J Phys Chem A ; 114(12): 4138-47, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20218724

ABSTRACT

The recombination reactions of CH(2)Br and CH(2)Cl radicals have been used to generate vibrationally excited CH(2)BrCH(2)Br and CH(2)BrCH(2)Cl molecules with 91 kcal mol(-1) of energy in a room-temperature bath gas. The experimental unimolecular rate constants for elimination of HBr and HCl were compared to calculated statistical rate constants to assign threshold energies of 58 kcal mol(-1) for HBr elimination from C(2)H(4)Br(2) and 58 and 60 kcal mol(-1), respectively, for HBr and HCl elimination from C(2)H(4)BrCl. The Br-Cl interchange reaction was demonstrated and characterized by studying the CH(2)BrCD(2)Cl system generated by the recombination of CH(2)Br and CD(2)Cl radicals. The interchange reaction was identified from the elimination of HBr and DCl from CH(2)ClCD(2)Br. The interchange reaction rate is much faster than the rates of either DBr or HCl elimination from CH(2)BrCD(2)Cl, and a threshold energy of congruent with43 kcal mol(-1) was assigned to the interchange reaction. The statistical rate constants were calculated from models of the transition states that were obtained from density functional theory using the B3PW91 method with the 6-31G(d',p') basis set. The model for HBr elimination was tested versus published thermal and chemical activation data for C(2)H(5)Br. A comparison of Br-Cl interchange with the Cl-F and Br-F interchange reactions in 1,2-haloalkanes is presented.

18.
J Phys Chem A ; 114(2): 794-803, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20039625

ABSTRACT

The recombination of CH(2)Cl and CH(2)F radicals generates vibrationally excited CH(2)ClCH(2)Cl, CH(2)FCH(2)F, and CH(2)ClCH(2)F molecules with about 90 kcal mol(-1) of energy in a room temperature bath gas. New experimental data for CH(2)ClCH(2)F have been obtained that are combined with previously published studies for C(2)H(4)Cl(2) and C(2)H(4)F(2) to define reliable rate constants of 3.0 x 10(8) (C(2)H(4)F(2)), 2.4 x 10(8) (C(2)H(4)Cl(2)), and 1.9 x 10(8) (CH(2)ClCH(2)F) s(-1) for HCl and HF elimination. The product branching ratio for CH(2)ClCH(2)F is approximately 1. These experimental rate constants are compared to calculated statistical rate constants (RRKM) to assign threshold energies for HF and HCl elimination. The calculated rate constants are based on transition-state models obtained from calculations of electronic structures; the energy levels of the asymmetric, hindered, internal rotation were directly included in the state counting to obtain a more realistic measure for the density of internal states for the molecules. The assigned threshold energies for C(2)H(4)F(2) and C(2)H(4)Cl(2) are both 63 +/- 2 kcal mol(-1). The threshold energies for CH(2)ClCH(2)F are 65 +/- 2 (HCl) and 63 +/- 2 (HF) kcal mol(-1). These threshold energies are 5-7 kcal mol(-1) higher than the corresponding values for C(2)H(5)Cl or C(2)H(5)F, and beta-substitution of F or Cl atoms raises threshold energies for HF or HCl elimination reactions. The treatment presented here for obtaining the densities of states and the entropy of activation from models with asymmetric internal rotations with high barriers can be used to judge the validity of using a symmetric internal-rotor approximation for other cases. Finally, threshold energies for the 1,2-fluorochloroethanes are compared to those of the 1,1-fluorochloroethanes to illustrate substituent effects on the relative energies of the isomeric transition states.

19.
J Phys Chem A ; 113(37): 10013-23, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19702256

ABSTRACT

The unimolecular reactions of 1-propanol, 3,3,3-propan-1-ol-d3, 3,3,3-trifluoropropan-1-ol, and 3-chloropropan-1-ol have been studied by the chemical activation technique. The recombination of CH3, CD3, CF3, and CH2Cl radicals with CH2CH2OH radicals at room temperature was used to generate vibrationally excited CH3CH2CH2OH, CD3CH2CH2OH, CF3CH2CH2OH, and CH2ClCH2CH2OH molecules. The principal unimolecular reaction for propanol and propanol-d3 with 90 kcal mol(-1) of vibrational energy is 1,2-H2O elimination with rate constants of 3.4 x 10(5) and 1.4 x 10(5) s(-1), respectively. For CH2ClCH2CH2OH also with 90 kcal mol(-1) of energy, 2,3-HCl elimination with a rate constant of 3.0 x 10(7) s(-1) is more important than 1,2-H2O elimination; the branching fractions are 0.95 and 0.05. For CF3CH2CH2OH with an energy of 102 kcal mol(-1), 1,2-H2O elimination has a rate constant of 7.9 x 10(5) and 2,3-HF elimination has a rate constant of 2.6 x 10(5) s(-1). Density functional theory was used to obtain models for the molecules and their transition states. The frequencies and moments of inertia from these models were used to calculate RRKM rate constants, which were used to assign threshold energies by comparing calculated and experimental rate constants. This comparison gives the threshold energy for H2O elimination from 1-propanol as 64 kcal mol(-1). The threshold energies for 1,2-H2O and 2,3-HCl elimination from CH2ClCH2CH2OH were 59 and 54 kcal mol(-1), respectively. The threshold energies for H2O and HF elimination from CF3CH2CH2OH are 62 and 70 kcal mol(-1), respectively. The structures of the transition states for elimination of HF, HCl, and H2O are compared.

20.
J Phys Chem A ; 112(47): 12117-24, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18983135

ABSTRACT

The unimolecular reactions of CF(2)ClCFClCH(2)F and CF(2)ClCF(2)CH(2)Cl molecules formed with 87 and 91 kcal mol(-1), respectively, of vibrational energy from the recombination of CF(2)ClCFCl with CH(2)F and CF(2)ClCF(2) with CH(2)Cl at room temperature have been studied by the chemical activation technique. The 2,3- and 1,2-ClF interchange reactions compete with 2,3-ClH and 2,3-FH elimination reactions. The total unimolecular rate constant for CF(2)ClCF(2)CH(2)Cl is 0.54 +/- 0.15 x 10(4) s(-1) with branching fractions for 1,2-ClF interchange of 0.03 and 0.97 for 2,3-FH elimination. The total rate constant for CF(2)ClCFClCH(2)F is 1.35 +/- 0.39 x 10(4) s(-1) with branching fractions of 0.20 for 2,3-ClF interchange, 0.71 for 2,3-ClH elimination and 0.09 for 2,3-FH elimination; the products from 1,2-ClF interchange could be observed, but the rate constant was too small to be measured. The D(CH(2)F-CFClCF(2)Cl) and D(CH(2)Cl-CF(2)CF(2)Cl) were evaluated by calculations for some isodesmic reactions and isomerization energies of CF(3)CFClCH(2)Cl as 84 and 88 kcal mol(-1), respectively; these values give the average energies of formed molecules at 298 K as noted above. Density functional theory was used to assign vibrational frequencies and moments of inertia for the molecules and their transition states. These results were combined with statistical unimolecular reaction theory to assign threshold energies from the experimental rate constants for ClF interchange, ClH elimination and FH elimination. These assignments are compared with results from previous chemical activation experiments with CF(3)CFClCH(2)Cl, CF(3)CF(2)CH(3,) CF(3)CFClCH(3) and CF(2)ClCF(2)CH(3).

SELECTION OF CITATIONS
SEARCH DETAIL
...