Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1822(10): 1581-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22721959

ABSTRACT

A characteristic feature of gas gangrene with Clostridium perfringens (C. perfringens) is the absence of neutrophils within the infected area and the massive accumulation of neutrophils at the vascular endothelium around the margins of the necrotic region. Intravenous injection of C. perfringens alpha-toxin into mice resulted in the accumulation of neutrophils at the vascular endothelium in lung and liver, and release of GRO/KC, a member of the CXC chemokine family with homology to human interleukin-8 (IL-8). Alpha-toxin triggered activation of signal transduction pathways causing mRNA expression and production of IL-8, which activates migration and binding of neutrophils, in A549 cells. K252a, a tyrosine kinase A (TrkA) inhibitor, and siRNA for TrkA inhibited the toxin-induced phosphorylation of TrkA and production of IL-8. In addition, K252a inhibited the toxin-induced phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). PD98059, an ERK1/2 inhibitor, depressed phosphorylation of ERK1/2 and nuclear translocation of nuclear factor kappa B (NF-κB) p65, but SB203580, a p38 MAPK inhibitor, did not. On the other hand, PD98059 and SB203580 suppressed the toxin-induced production of IL-8. Treatment of the cells with PD98059 resulted in inhibition of IL-8 mRNA expression induced by the toxin and that with SB203580 led to a decrease in the stabilization of IL-8 mRNA. These results suggest that alpha-toxin induces production of IL-8 through the activation of two separate pathways, the ERK1/2/NF-κB and p38 MAPK pathways.


Subject(s)
Bacterial Toxins/pharmacology , Calcium-Binding Proteins/pharmacology , Interleukin-8/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Type C Phospholipases/pharmacology , Animals , Carbazoles/pharmacology , Cell Line, Tumor , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Indole Alkaloids/pharmacology , Interleukin-8/genetics , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred ICR , NF-kappa B/genetics , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , RNA, Messenger/genetics , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Br J Pharmacol ; 138(1): 23-30, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12522069

ABSTRACT

1 Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. 2 The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. 3 The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. 4 Tachykinin NK(1) receptor antagonists, [D-Pro(2), D-Trp(7,9)]-SP, [D-Pro(4), D-Trp(7,9)]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK(1) receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. 5 The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP(8-37)). 6 The toxin-induced leakage was significantly inhibited by the N-type Ca(2+) channel blocker, omega-conotoxin MVIIA, and the bradykinin B(2) receptor antagonist, HOE140 (D-Arg-[Hyp(3), Thi(5), D-Tic(7), Oic(8)]-bradykinin), but was not affected by the selective L-type Ca(2+) channel blocker, verapamil, the P-type Ca(2+) channel blocker, omega-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na(+) channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. 7 These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK(1) receptors.


Subject(s)
Bacterial Toxins/pharmacology , Edema/blood , Receptors, Tachykinin/metabolism , Skin/drug effects , Animals , Edema/chemically induced , Edema/pathology , Male , Mice , Mice, Inbred BALB C , Receptors, Tachykinin/antagonists & inhibitors , Skin/metabolism , Skin/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...