Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB Bioadv ; 4(6): 408-434, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35664831

ABSTRACT

The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.

2.
FASEB J ; : fj201800218RR, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29812972

ABSTRACT

The mechanism that causes genomic instability in nondividing aging cells is unknown. Our previous study of mutant yeast suggested that 2 types of replication-independent endogenous DNA double-strand breaks (RIND-EDSBs) exist and that they play opposing roles. The first type, known as physiologic RIND-EDSBs, were ubiquitous in the G0 phase of both yeast and human cells in certain genomic locations and may act as epigenetic markers. Low RIND-EDSB levels were found in mutants that lacked chromatin-condensing proteins, such as the high-mobility group box (HMGB) proteins and Sir2. The second type is referred to as pathologic RIND-EDSBs. High pathological RIND-EDSB levels were found in DSB repair mutants. Under normal physiologic conditions, these excess RIND-EDSBs are repaired in much the same way as DNA lesions. Here, chronological aging in yeast reduced physiological RIND-EDSBs and cell viability. A strong correlation was observed between the reduction in RIND-EDSBs and viability in aging yeast cells ( r = 0.94, P < 0.0001). We used galactose-inducible HO endonuclease (HO) and nhp6a∆, an HMGB protein mutant, to evaluate the consequences of reduced physiological RIND-EDSB levels. The HO-induced cells exhibited a sustained reduction in RIND-EDSBs at various levels for several days. Interestingly, we found that lower physiologic RIND-EDSB levels resulted in decreased cell viability ( r = 0.69, P < 0.0001). Treatment with caffeine, a DSB repair inhibitor, increased pathological RIND-EDSBs, which were distinguished from physiologic RIND-EDSBs by their lack of sequences prior to DSB in untreated cells [odds ratio (OR) ≤1]. Caffeine treatment in both the HO-induced and nhp6a∆ cells markedly increased OR ≤1 breaks. Therefore, physiological RIND-EDSBs play an epigenetic role in preventing pathological RIND-EDSBs, a type of DNA damage. In summary, the reduction of physiological RIND-EDSB level is a genomic instability mechanism in chronologically aging cells.-Thongsroy, J., Patchsung, M., Pongpanich, M., Settayanon, S., Mutirangura, A. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast.

3.
Epigenomics ; 10(2): 175-185, 2018 02.
Article in English | MEDLINE | ID: mdl-29336607

ABSTRACT

Global DNA hypomethylation promoting genomic instability leads to cancer and deterioration of human health with age. AIM: To invent a biotechnology that can reprogram this process. METHODS: We used Alu siRNA to direct Alu interspersed repetitive sequences methylation in human cells. We evaluated the correlation between DNA damage and Alu methylation levels. RESULTS: We observed an inverse correlation between Alu element methylation and endogenous DNA damage in white blood cells. Cells transfected with Alu siRNA exhibited high Alu methylation levels, increased proliferation, reduced endogenous DNA damage and improved resistance to DNA damaging agents. CONCLUSION: Alu methylation stabilizes the genome by preventing accumulation of DNA damage. Alu siRNA could be useful for evaluating reprograming of the global hypomethylation phenotype in cancer and aging cells.


Subject(s)
Alu Elements , DNA Damage , DNA Methylation , Genomic Instability , Aging , Humans , Interspersed Repetitive Sequences , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...