Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucleic Acids ; 20102010 Sep 19.
Article in English | MEDLINE | ID: mdl-20936169

ABSTRACT

N3-methyladenine (3-mA) is a cytotoxic lesion formed by the reaction of DNA with many methylating agents, including antineoplastic drugs, environmental agents and endogenously generated compounds. The toxicity of 3-mA has been attributed to its ability to block DNA polymerization. Using Me-lex, a compound that selectively and efficiently reacts with DNA to afford 3-mA, we have observed in yeast a mutational hotspot at the 5'-terminus of an A(4) tract. In order to explore the potential role of sequence-dependent DNA polymerase bypass of 3-mA, we developed an in vitro system to prepare 3-mA modified substrates using Me-lex. We detail the effects of 3-mA, its stable isostere analogue, 3-methyl-3-deazaadenine, 3-deazaadenine and an THF abasic site on DNA polymerization within an A(4) sequence. The methyl group on 3-mA and 3-methyl-3-deazaadenine has a pronounced inhibitory effect on DNA polymerization. There was no sequence selectivity for the bypass of any of the lesions, except for the abasic site, which was most efficiently by-passed when it was on the 5'-terminus of the A(4) tract. The results indicate that the weak mutational pattern induced by Me-lex may result form the depurination of 3-mA to an abasic site that is bypassed in a sequence dependent context.

2.
Biochemistry ; 42(48): 14318-27, 2003 Dec 09.
Article in English | MEDLINE | ID: mdl-14640700

ABSTRACT

Minor groove specific DNA equilibrium binding peptides (lex) based on N-methylpyrrole-carboxamide and/or N-methylimidazolecarboxamide subunits have been modified with an O-methyl sulfonate ester functionality to target DNA methylation in the minor groove at Ade/Thy- and/or Gua/Cyt-rich sequences. HPLC and sequencing gel analyses show that the Me-lex compounds all selectively react with DNA to afford N3-alkyladenine as a major adduct. The formation of the N3-alkyladenine lesions is sequence-dependent based on the equilibrium binding preferences of the different lex peptides. In addition to the reaction at adenine, the molecules designed to target Gua/Cyt sequences also generate lesions at guanine; however, the methylation is not sequence dependent and takes places in the major groove at the N7-position. To determine if and how the level of the different DNA adducts and the sequence selectivity for their formation affects cytotoxicity, the Me-lex analogues were tested in wild type Escherichia coli and in mutant strains defective in base excision repair (tag and/or alkA or apn). The results demonstrate the importance of 3-methyladenine, and in some cases 3-methylguanine, lesions in cellular toxicity, and the dominant protective role of the DNA glycosylases. There is no evidence that the sequence specificity is related to toxicity.


Subject(s)
Adenine/analogs & derivatives , Anti-Bacterial Agents/toxicity , DNA Damage , DNA, Bacterial/metabolism , Escherichia coli/drug effects , Guanine/analogs & derivatives , Mesylates/toxicity , Netropsin/analogs & derivatives , Netropsin/toxicity , Adenine/metabolism , Adenine/toxicity , Base Sequence/drug effects , DNA Adducts/analysis , DNA Adducts/metabolism , DNA Fragmentation/drug effects , DNA Methylation/drug effects , DNA Repair/drug effects , DNA, Bacterial/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Esters , Guanine/metabolism , Guanine/toxicity , Molecular Sequence Data , Netropsin/chemical synthesis , Netropsin/chemistry , Nucleic Acid Conformation/drug effects , Protein Binding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...