Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 166(10): 6341-8, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11342658

ABSTRACT

The anaphylatoxin C3a is a potent chemotactic peptide and inflammatory mediator released during complement activation which binds to and activates a G-protein-coupled receptor. Molecular cloning of the C3aR has facilitated studies to identify nonpeptide antagonists of the C3aR. A chemical lead that selectively inhibited the C3aR in a high throughput screen was identified and chemically optimized. The resulting antagonist, N(2)-[(2,2-diphenylethoxy)acetyl]-L-arginine (SB 290157), functioned as a competitive antagonist of (125)I-C3a radioligand binding to rat basophilic leukemia (RBL)-2H3 cells expressing the human C3aR (RBL-C3aR), with an IC(50) of 200 nM. SB 290157 was a functional antagonist, blocking C3a-induced C3aR internalization in a concentration-dependent manner and C3a-induced Ca(2+) mobilization in RBL-C3aR cells and human neutrophils with IC(50)s of 27.7 and 28 nM, respectively. SB 290157 was selective for the C3aR in that it did not antagonize the C5aR or six other chemotactic G protein-coupled receptors. Functional antagonism was not solely limited to the human C3aR; SB 290157 also inhibited C3a-induced Ca(2+) mobilization of RBL-2H3 cells expressing the mouse and guinea pig C3aRS: It potently inhibited C3a-mediated ATP release from guinea pig platelets and inhibited C3a-induced potentiation of the contractile response to field stimulation of perfused rat caudal artery. Furthermore, in animal models, SB 290157, inhibited neutrophil recruitment in a guinea pig LPS-induced airway neutrophilia model and decreased paw edema in a rat adjuvant-induced arthritis model. This selective antagonist may be useful to define the physiological and pathophysiological roles of the C3aR.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arginine/pharmacology , Benzhydryl Compounds/pharmacology , Complement C3a/metabolism , Complement Inactivator Proteins/pharmacology , Membrane Proteins , Receptors, Complement/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Arginine/analogs & derivatives , Arginine/metabolism , Arginine/pharmacokinetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/pharmacokinetics , Binding, Competitive , Cell Line , Complement Inactivator Proteins/metabolism , Complement Inactivator Proteins/pharmacokinetics , Disease Models, Animal , Edema/pathology , Edema/prevention & control , Guinea Pigs , Hindlimb , Humans , Injections, Intraperitoneal , Leukocytosis/immunology , Leukocytosis/pathology , Male , Mice , Muscle Contraction/drug effects , Neutrophil Infiltration/drug effects , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Receptors, Complement/metabolism , Tumor Cells, Cultured
2.
J Immunol ; 162(12): 7409-16, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10358194

ABSTRACT

The C3a receptor (C3aR) is expressed on most human peripheral blood leukocytes with the exception of resting lymphocytes, implying a much higher pathophysiological relevance of the anaphylatoxin C3a as a proinflammatory mediator than previously thought. The response to this complement split product must be tightly regulated in situations with sustained complement activation to avoid deleterious effects caused by overactivated inflammatory cells. Receptor internalization, an important control mechanism described for G protein-coupled receptors, was investigated. Using rabbit polyclonal anti-serum directed against the C3aR second extracellular loop, a flow cytometry-based receptor internalization assay was developed. Within minutes of C3a addition to human granulocytes, C3aR almost completely disappeared from the cell surface. C3aR internalization could also be induced by PMA, an activator of protein kinase C. Similarly, monocytes, the human mast cell line HMC-1, and differentiated monocyte/macrophage-like U937-cells exhibited rapid agonist-dependent receptor internalization. Neither C5a nor FMLP stimulated any cross-internalization of the C3aR. On the contrary, costimulation of granulocytes with C5a, but not FMLP, drastically decreased C3aR internalization. This effect could be blocked by a C5aR-neutralizing mAb. HEK293-cells transfected with the C3aR, with or without Galpha16, a pertussis toxin-resistant G protein alpha subunit required for C3aR signal transduction in these cells, did not exhibit agonist-dependent C3aR internalization. Additionally, preincubation with pertussis toxin had no effect on C3a-induced internalization on PMNs. C3aR internalization is a rapid negative control mechanism and is influenced by the C5aR pathway.


Subject(s)
Complement C3a/metabolism , Complement C5a/pharmacology , Complement Inactivator Proteins/pharmacology , Macrophage-1 Antigen/metabolism , Acids , Buffers , Cell Differentiation , Cell Line , Dose-Response Relationship, Immunologic , Flow Cytometry , Humans , Interferon-gamma/pharmacology , Iodine Radioisotopes , Leukemia, Myelomonocytic, Acute/metabolism , Ligands , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Pertussis Toxin , Tetradecanoylphorbol Acetate/pharmacology , U937 Cells , Virulence Factors, Bordetella/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...