Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Article in English | MEDLINE | ID: mdl-38415197

ABSTRACT

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating "avatars" (herein defined as an extension of "digital twins") of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.

2.
J Biomech Eng ; 145(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-36629011

ABSTRACT

Let me begin by sharing my deepest appreciation to the ASME for honoring me with the HR Lissner Medal and to the Journal of Biomechanical Engineering for this opportunity to share my personal path through biomechanics. ASME has been an academic home for me since my days as a doctoral student where my PhD advisors, Van C. Mow and W. Michael Lai, first supported my presenting on original research in the poster sessions and student competition of the Winter Annual Meetings. ASME meetings were where I met so many career advisors including Bob Nerem, Shu Chien, Savio Woo, Sheldon Weinbaum, Mort Friedman, Steve Goldstein, and Larry Taber who shared insights and tips to support me in navigating the bio-engineering discipline. Each of these mentors and advisors previously received the HR Lissner Medal and to be added to this community brings me the greatest sense of belonging. As I hope to convey here and as I did in my 2022 talk, I very much share this honor with numerous talented trainees that have led and motivated much of the directions in my own research program. For more than 30 years, I benefited from this collective of individuals who provided energy, innovation, talent and shared wisdom that brings me to where I stand now and is a testament to the importance of mentoring in the community of Lissner Medalists and ASME.


Subject(s)
Awards and Prizes , Mentoring , Humans , Biomechanical Phenomena , Mentors
3.
Appl Sci (Basel) ; 12(16)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36451894

ABSTRACT

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.

4.
Arch Appl Mech ; 92(2): 447-459, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35386426

ABSTRACT

Transport of solute across the arterial wall is a process driven by both convection and diffusion. In disease, the elastic fibers in the arterial wall are disrupted and lead to altered fluid and mass transport kinetics. A computational mixture model was used to numerically match previously published data of fluid and solute permeation experiments in groups of mouse arteries with genetic (knockout of fibulin-5) or chemical (treatment with elastase) disruption of elastic fibers. A biphasic model of fluid permeation indicated the governing property to be the hydraulic permeability, which was estimated to be 1.52×10-9, 1.01×10-8, and 1.07×10-8 mm4/µN.s for control, knockout, and elastase groups, respectively. A multiphasic model incorporating solute transport was used to estimate effective diffusivities that were dependent on molecular weight, consistent with expected transport behaviors in multiphasic biological tissues. The effective diffusivity for the 4 kDA FITC-dextran solute, but not the 70 or 150 kDa FITC-dextran solutes, was dependent on elastic fiber structure, with increasing values from control to knockout to elastase groups, suggesting that elastic fiber disruption affects transport of lower molecular weight solutes. The model used here sets the groundwork for future work investigating transport through the arterial wall.

6.
Biophys J ; 121(4): 575-581, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35032457

ABSTRACT

The synovium is a multilayer connective tissue separating the intra-articular spaces of the diarthrodial joint from the extra-synovial vascular and lymphatic supply. Synovium regulates drug transport into and out of the joint, yet its material properties remain poorly characterized. Here, we measured the compressive properties (aggregate modulus, Young's modulus, and Poisson's ratio) and hydraulic permeability of synovium with a combined experimental-computational approach. A compressive aggregate modulus and Young's modulus for the solid phase of synovium were quantified from linear regression of the equilibrium confined and unconfined compressive stress upon strain, respectively (HA = 4.3 ± 2.0 kPa, Es = 2.1 ± 0.75, porcine; HA = 3.1 ± 2.0 kPa, Es = 2.8 ± 1.7, human). Poisson's ratio was estimated to be 0.39 and 0.40 for porcine and human tissue, respectively, from moduli values in a Monte Carlo simulation. To calculate hydraulic permeability, a biphasic finite element model's predictions were numerically matched to experimental data for the time-varying ramp and hold phase of a single increment of applied strain (k = 7.4 ± 4.1 × 10-15 m4/N.s, porcine; k = 7.4 ± 4.3 × 10-15 m4/N.s, human). We can use these newly measured properties to predict fluid flow gradients across the tissue in response to previously reported intra-articular pressures. These values for material constants are to our knowledge the first available measurements in synovium that are necessary to better understand drug transport in both healthy and pathological joints.


Subject(s)
Cartilage, Articular , Animals , Cartilage, Articular/physiology , Compressive Strength/physiology , Elasticity , Humans , Models, Biological , Permeability , Stress, Mechanical , Swine , Synovial Membrane
7.
Biomaterials ; 277: 121113, 2021 10.
Article in English | MEDLINE | ID: mdl-34492582

ABSTRACT

Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Alginates , Humans , Hydrogels , Integrins , Peptides , Phenotype , Syndecans
8.
Acta Biomater ; 131: 117-127, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34229105

ABSTRACT

Degeneration of the intervertebral disc (IVD) is associated with significant biochemical and morphological changes that include a loss of disc height, decreased water content and decreased cellularity. Cell delivery has been widely explored as a strategy to supplement the nucleus pulposus (NP) region of the degenerated IVD in both pre-clinical and clinical trials, using progenitor or primary cell sources. We previously demonstrated an ability for a polymer-peptide hydrogel, serving as a culture substrate, to promote adult NP cells to undergo a shift from a degenerative fibroblast-like state to a juvenile-like NP phenotype. In the current study, we evaluate the ability for this peptide-functionalized hydrogel to serve as a bioactive system for cell delivery, retention and preservation of a biosynthetic phenotype for primary IVD cells delivered to the rat caudal disc in an anular puncture degeneration model. Our data suggest that encapsulation of adult degenerative human NP cells in a stiff formulation of the hydrogel functionalized with laminin-mimetic peptides IKVAV and AG73 can promote cell viability and increased biosynthetic activity for this population in 3D culture in vitro. Delivery of the peptide-functionalized biomaterial with primary rat cells to the degenerated IVD supported NP cell retention and NP-specific protein expression in vivo, and promoted improved disc height index (DHI) values and endplate organization compared to untreated degenerated controls. The results of this study suggest the physical cues of this peptide-functionalized hydrogel can serve as a supportive carrier for cell delivery to the IVD. STATEMENT OF SIGNIFICANCE: Cell delivery into the degenerative intervertebral disc has been widely explored as a strategy to supplement the nucleus pulposus. The current work seeks to employ a biomaterial functionalized with laminin-mimetic peptides as a cell delivery scaffold in order to improve cell retention rates within the intradiscal space, while providing the delivered cells with biomimetic cues in order to promote phenotypic expression and increase biosynthetic activity. The use of the in situ crosslinkable material integrated with the native IVD, presenting a system with adequate physical properties to support a degenerative disc.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Hydrogels/pharmacology , Intervertebral Disc Degeneration/therapy , Peptides/pharmacology , Polymers , Rats
9.
J Tissue Eng ; 12: 20417314211021220, 2021.
Article in English | MEDLINE | ID: mdl-34188794

ABSTRACT

The nucleus pulposus (NP) of the intervertebral disc plays a critical role in distributing mechanical loads to the axial skeleton. Alterations in NP cells and, consequently, NP matrix are some of the earliest changes in the development of disc degeneration. Previous studies demonstrated a role for laminin-presenting biomaterials in promoting a healthy phenotype for human NP cells from degenerated tissue. Here we investigate the use of laminin-mimetic peptides presented individually or in combination on a poly(ethylene) glycol hydrogel as a platform to modulate the behaviors of degenerative human NP cells. Data confirm that NP cells attach to select laminin-mimetic peptides that results in cell signaling downstream of integrin and syndecan binding. Furthermore, the peptide-functionalized hydrogels demonstrate an ability to promote cell behaviors that mimic that of full-length laminins. These results identify a set of peptides that can be used to regulate NP cell behaviors toward a regenerative engineering strategy.

10.
Acta Biomater ; 133: 74-86, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33823324

ABSTRACT

Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Arthritis, Rheumatoid/therapy , Biocompatible Materials , Humans , Immunomodulation , Immunotherapy , Osteoarthritis/therapy
11.
Cell ; 184(3): 561-565, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33503447

ABSTRACT

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Subject(s)
Biomedical Research/economics , Black or African American , Financial Management , Research Personnel/economics , Humans , National Institutes of Health (U.S.)/economics , Racial Groups , United States
12.
Ann Biomed Eng ; 49(4): 1245-1256, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33495977

ABSTRACT

Intra-articular drug delivery can be effective in targeting a diseased joint but is hampered by rapid clearance times from the diarthrodial joint. The synovium is a multi-layered tissue that surrounds the diarthrodial joint and governs molecular transport into and out of the joint. No models of drug clearance through synovium exist to quantify diffusivity across solutes, tissue type and disease pathology. We previously have developed a finite element model of synovium as a porous, permeable, fluid-filled tissue and used an inverse method to determine urea's effective diffusivity (Deff) in de-vitalized synovium explants.22 Here we apply this method to determine Deff from unsteady diffusive transport of model solutes and confirm the role of molecular weight in solute transport. As molecular weight increased, Deff decreased in both human and porcine tissues, with similar behavior across the two species. Unsteady transport was well-described by a single exponential transient decay in concentration, yielding solute half-lives (t1/2) that compared favorably with the Deff determined from the finite element model fit. Determined values for Deff parallel prior observations of size-dependent in vivo drug clearance and provide an intrinsic parameter with greater ability to resolve size-dependence in vitro. Thus, this work forms the basis for understanding the influence of size on drug transport in synovium and can guide future studies to elucidate the role of charge and tissue pathology on the transport of therapeutics in healthy and pathological human synovium.


Subject(s)
Models, Biological , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Synovial Membrane/metabolism , Animals , Diffusion , Humans , Knee Joint/metabolism , Molecular Weight , Swine
13.
Ann Biomed Eng ; 49(3): 1110-1118, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33479787

ABSTRACT

Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.


Subject(s)
Ganglia, Spinal/physiology , Neurons/physiology , Animals , Calcium/physiology , Electric Stimulation , Mice, Transgenic , Microscopy, Confocal , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/physiology
14.
Biomaterials ; 250: 120057, 2020 08.
Article in English | MEDLINE | ID: mdl-32361392

ABSTRACT

Cells of the nucleus pulposus have been observed to undergo a shift from their notochordal-like juvenile phenotype to a more fibroblast-like state with age and maturation. It has been demonstrated that culture of degenerative adult human nucleus pulposus cells upon soft (<1 kPa) full length laminin-containing hydrogel substrates promotes increased levels of a panel of markers associated with the juvenile nucleus pulposus cell phenotype. In the current work, we observed an ability to use soft polymeric substrates functionalized with short laminin-mimetic peptide sequences to recapitulate the behaviors elicited by soft, full-length laminin containing materials. Furthermore, our work suggests an ability to mimic features of soft systems through control of peptide density upon stiffer substrates. Specifically, results suggest that stiffer polymer-peptide hydrogel substrates can be used to promote the expression of a more juvenile-like phenotype for cells of the nucleus pulposus by reducing adhesive ligand presentation. Here we show how polymer stiffness combined with adhesive ligand presentation can be controlled to be supportive of nucleus pulposus cell phenotype and biosynthesis.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Adhesives , Adult , Humans , Laminin , Ligands , Phenotype
15.
J Biomech Eng ; 142(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-31536113

ABSTRACT

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Subject(s)
Finite Element Analysis , Synovial Membrane , Animals , Biological Transport , Cartilage, Articular , Diffusion , Models, Biological , Swine
16.
FASEB J ; 33(12): 14022-14035, 2019 12.
Article in English | MEDLINE | ID: mdl-31638828

ABSTRACT

Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/physiology , Trans-Activators/metabolism , Transcription Factors/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Aging , Biomechanical Phenomena , Cells, Cultured , Cytoskeleton , Gene Expression Regulation , Humans , Hydrogels , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , RNA Interference , Trans-Activators/genetics , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
17.
Sci Rep ; 9(1): 3759, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842475

ABSTRACT

Low back pain is associated with degeneration of the intervertebral disc, but specific mechanisms of pain generation in this pathology remain unknown. Sensory afferent nerve fiber growth into the intervertebral disc after injury-induced inflammation may contribute to discogenic pain. We describe a clinically relevant behavioral phenotype in a rodent model of chronic intervertebral disc degeneration which provides a means to map sensory neuron changes to a single affected lumbar intervertebral disc. Unilateral disc puncture of one lumbar intervertebral disc revealed a bilateral behavioral phenotype characterized by gait changes and decreased activity. Moreover, neurons extracted from the dorsal root ganglia in animals with intervertebral disc injury demonstrated altered TRPV1 activation in vitro independent of exogenous NGF administration. Finally, neuronal nuclear hypertrophy and elevated expression of p75NTR provide evidence of active adaptation of innervating sensory neurons in chronic intervertebral disc degeneration. Therefore, this model and findings provide the template for future studies to establish specific mechanisms of nociceptive pain in chronic intervertebral disc degeneration.


Subject(s)
Ganglia, Spinal/physiopathology , Intervertebral Disc Degeneration/physiopathology , Low Back Pain/etiology , Animals , Disease Models, Animal , Female , Gait Analysis , Intervertebral Disc Degeneration/complications , Low Back Pain/physiopathology , Neuronal Plasticity , Pilot Projects , Rats , Rats, Sprague-Dawley
18.
JOR Spine ; 1(3)2018 Sep.
Article in English | MEDLINE | ID: mdl-30569032

ABSTRACT

Mechanical loading of the intervertebral disc (IVD) initiates cell-mediated remodeling events that contribute to disc degeneration. Cells of the IVD, nucleus pulposus (NP) and anulus fibrosus (AF), will exhibit various responses to different mechanical stimuli which appear to be highly dependent on loading type, magnitude, duration, and anatomic zone of cell origin. Cells of the NP, the innermost region of the disc, exhibit an anabolic response to low-moderate magnitudes of static compression, osmotic pressure, or hydrostatic pressure, while higher magnitudes promote a catabolic response marked by increased protease expression and activity. Cells of the outer AF are responsive to physical forces in a manner that depends on frequency and magnitude, as are cells of the NP, though they experience different forces, deformations, pressure, and osmotic pressure in vivo. Much remains to be understood of the mechanotransduction pathways that regulate IVD cell responses to loading, including responses to specific stimuli and also differences among cell types. There is evidence that cytoskeletal remodeling and receptor-mediated signaling are important mechanotransduction events that can regulate downstream effects like gene expression and posttranslational biosynthesis, all of which may influence phenotype and bioactivity. These and other mechanotransduction events will be regulated by known and to-be-discovered cell-matrix and cell-cell interactions, and depend on composition of extracellular matrix ligands for cell interaction, matrix stiffness, and the phenotype of the cells themselves. Here, we present a review of the current knowledge of the role of mechanical stimuli and the impact upon the cellular response to loading and changes that occur with aging and degeneration of the IVD.

19.
Foot Ankle Int ; 39(10): 1169-1177, 2018 10.
Article in English | MEDLINE | ID: mdl-30111168

ABSTRACT

BACKGROUND: Post-traumatic osteoarthritis (PTOA) is a frequent complication in patients with a previous traumatic joint injury, and the pathophysiology is not well understood. The goal of this study was to characterize the biochemical signature of amino acids, peptides, and amino acid metabolites in ankle synovial fluid following intra-articular fracture. METHODS: Synovial fluid from both the injured and contralateral ankles of 19 patients with an intra-articular ankle fracture was obtained and analyzed via metabolic profiling. Follow-up analysis was performed after 6 months in 7 of these patients. RESULTS: Statistical comparisons between injured and contralateral ankles revealed that 19 of the 66 measured amino acids, peptides, and amino acid metabolites were significantly elevated at time of fracture. Metabolites associated with glutathione metabolism exhibited the most elevated mean-fold changes, indicating a possible role for oxidative stress in fractured ankles. None of the metabolites elevated at baseline were significantly elevated after 6 months, but 6 metabolites had mean-fold changes greater than 2.1 at this time point. Multiple metabolites also exhibited significant correlations ( r > 0.575) with matrix metalloproteinase-1 and -9. CONCLUSION: These results indicate the presence of amino acid metabolic products in the setting of ankle fracture and suggest that these changes in amino acid metabolism may be chronic and indicate a role for inflammation and collagen degradation in disease progression. CLINICAL RELEVANCE: Changes in amino acid metabolism following intra-articular fracture may contribute to the progression to PTOA. This knowledge may allow for the identification and early treatment of patients at risk of developing PTOA. LEVEL OF EVIDENCE: Level III, comparative series.


Subject(s)
Amino Acids/metabolism , Ankle Fractures/metabolism , Intra-Articular Fractures/metabolism , Osteoarthritis/metabolism , Synovial Fluid/metabolism , Adult , Ankle Fractures/diagnostic imaging , Female , Humans , Intra-Articular Fractures/diagnostic imaging , Male , Middle Aged , Osteoarthritis/diagnostic imaging , Retrospective Studies
20.
J Control Release ; 283: 76-83, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29842918

ABSTRACT

OBJECTIVE: Determine the effects of arthritis on the trans-synovial clearance of small and large model compounds following local delivery to the knee joint in a rat model. DESIGN: Intra-articular delivery was studied in rat knee joints in an osteoarthritis model of joint instability (medial collateral ligament and meniscus transection model or MMT). Fluorescently-labeled 10 kDa or 500 kDa dextran was injected in the arthritic or unoperated control (naive) joints 3 weeks after surgical destabilization, and the temporal clearance pattern was evaluated via in vivo regional fluorescence imaging, dextran concentrations in plasma and draining lymph nodes, and by quantification of fluorescence in histological synovium sections. Together these data were used to evaluate the effect of osteoarthritis and solute size on the rate of drug clearance from the joint. RESULTS: Clearance of 10 kDa dextran from the joint space quantified using in vivo fluorescence imaging of the knee joint region was not significantly different between naive and MMT joints. In contrast, clearance of 500 kDa dextran was significantly reduced for MMT joints when compared to naive joints by fluorescence in vivo imaging. Drug accumulation in lymph nodes and plasma were lower for the 500 kDa dextran as compared to 10 kDa dextran, and lymph node levels were further reduced with the presence of osteoarthritis. Furthermore, synovium was significantly thicker in MMT joints than in naive joints and image analysis of joint tissue sections revealed different trans-synovial distributions of 10 and 500 kDa dextran. CONCLUSION: Large macromolecules were retained in the arthritic joint longer than in the healthy joint, while smaller molecules were cleared similarly in healthy and arthritic joints. In vivo fluorescence imaging, plasma and lymph node concentrations, and spatial distributions of drug fluorescence identified differences in higher molecular weight clearance between naive and arthritic disease states. Findings may relate to a thickening of synovium for joints with induced arthritis, and support the concept that intra-articular drug delivery effectiveness may vary with the state of joint pathology.


Subject(s)
Arthritis, Experimental/metabolism , Dextrans/pharmacokinetics , Joint Instability/metabolism , Knee Joint/metabolism , Osteoarthritis/metabolism , Synovial Membrane/metabolism , Animals , Dextrans/administration & dosage , Dextrans/blood , Injections, Intra-Articular , Lymph Nodes/metabolism , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...