Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 249(0): 84-97, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37791454

ABSTRACT

Natural minerals contain ions that become hydrated when they come into contact with water in vapor and liquid forms. Muscovite mica - a common phyllosilicate with perfect cleavage planes - is an ideal system to investigate the details of ion hydration. The cleaved mica surface is decorated by an array of K+ ions that can be easily exchanged with other ions or protons when immersed in an aqueous solution. Despite the vast interest in the atomic-scale hydration processes of these K+ ions, experimental data under controlled conditions have remained elusive. Here, atomically resolved non-contact atomic force microscopy (nc-AFM) is combined with X-ray photoelectron spectroscopy (XPS) to investigate the cation hydration upon dosing water vapor at 100 K in ultra-high vacuum (UHV). The cleaved surface is further exposed to ultra-clean liquid water at room temperature, which promotes ion mobility and partial ion-to-proton substitution. The results offer the first direct experimental views of the interaction of water with muscovite mica under UHV. The findings are in line with previous theoretical predictions.

2.
J Phys Chem C Nanomater Interfaces ; 127(37): 18378-18388, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37752903

ABSTRACT

The adsorption/desorption of ethene (C2H4), also commonly known as ethylene, on Fe3O4(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C2H4 adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C2H4 binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × âˆš2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1-0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C2H4 adsorption is found to be close to 4 molecules per (√2 × âˆš2)R45° unit cell.

3.
Nat Commun ; 14(1): 208, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36639388

ABSTRACT

Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.

4.
Sci Adv ; 8(33): eabq1433, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984882

ABSTRACT

Polarizable materials attract attention in catalysis because they have a free parameter for tuning chemical reactivity. Their surfaces entangle the dielectric polarization with surface polarity, excess charge, and orbital hybridization. How this affects individual adsorbed molecules is shown for the incipient ferroelectric perovskite KTaO3. This intrinsically polar material cleaves along (001) into KO- and TaO2-terminated surface domains. At TaO2 terraces, the polarity-compensating excess electrons form a two-dimensional electron gas and can also localize by coupling to ferroelectric distortions. TaO2 terraces host two distinct types of CO molecules, adsorbed at equivalent lattice sites but charged differently as seen in atomic force microscopy/scanning tunneling microscopy. Temperature-programmed desorption shows substantially stronger binding of the charged CO; in density functional theory calculations, the excess charge favors a bipolaronic configuration coupled to the CO. These results pinpoint how adsorption states couple to ferroelectric polarization.

5.
Nat Commun ; 13(1): 4311, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879300

ABSTRACT

Excess charge on polar surfaces of ionic compounds is commonly described by the two-dimensional electron gas (2DEG) model, a homogeneous distribution of charge, spatially-confined in a few atomic layers. Here, by combining scanning probe microscopy with density functional theory calculations, we show that excess charge on the polar TaO2 termination of KTaO3(001) forms more complex electronic states with different degrees of spatial and electronic localization: charge density waves (CDW) coexist with strongly-localized electron polarons and bipolarons. These surface electronic reconstructions, originating from the combined action of electron-lattice interaction and electronic correlation, are energetically more favorable than the 2DEG solution. They exhibit distinct spectroscopy signals and impact on the surface properties, as manifested by a local suppression of ferroelectric distortions.

6.
Sci Adv ; 8(13): eabn4580, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35363523

ABSTRACT

Heterogeneous catalysts based on subnanometer metal clusters often exhibit strongly size-dependent properties, and the addition or removal of a single atom can make all the difference. Identifying the most active species and deciphering the reaction mechanism is extremely difficult, however, because it is often not clear how the catalyst evolves in operando. Here, we use a combination of atomically resolved scanning probe microscopies, spectroscopic techniques, and density functional theory (DFT)-based calculations to study CO oxidation by a model Pt/Fe3O4(001) "single-atom" catalyst. We demonstrate that (PtCO)2 dimers, formed dynamically through the agglomeration of mobile Pt-carbonyl species, catalyze a reaction involving the oxide support to form CO2. Pt2 dimers produce one CO2 molecule before falling apart into two adatoms, releasing the second CO. Olattice extraction only becomes facile when both the Pt-dimer and the Fe3O4 support can access metastable configurations, suggesting that substantial, concerted rearrangements of both cluster and support must be considered for reactions occurring at elevated temperature.

7.
Angew Chem Int Ed Engl ; 61(25): e202204244, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35384213

ABSTRACT

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure-the (4×4) surface oxide on Pt3 Sn(111)-based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.

8.
Angew Chem Weinheim Bergstr Ger ; 134(25): e202204244, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-38505419

ABSTRACT

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure-the (4×4) surface oxide on Pt3Sn(111)-based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.

9.
Nature ; 592(7856): 722-725, 2021 04.
Article in English | MEDLINE | ID: mdl-33911267

ABSTRACT

The state of deprotonation/protonation of surfaces has far-ranging implications in chemistry, from acid-base catalysis1 and the electrocatalytic and photocatalytic splitting of water2, to the behaviour of minerals3 and biochemistry4. An entity's acidity is described by its proton affinity and its acid dissociation constant pKa (the negative logarithm of the equilibrium constant of the proton transfer reaction in solution). The acidity of individual sites is difficult to assess for solids, compared with molecules. For mineral surfaces, the acidity is estimated by semi-empirical concepts, such as bond-order valence sums5, and increasingly modelled with first-principles molecular dynamics simulations6,7. At present, such predictions cannot be tested-experimental measures, such as the point of zero charge8, integrate over the whole surface or, in some cases, individual crystal facets9. Here we assess the acidity of individual hydroxyl groups on In2O3(111)-a model oxide with four different types of surface oxygen atom. We probe the strength of their hydrogen bonds with the tip of a non-contact atomic force microscope and find quantitative agreement with density functional theory calculations. By relating the results to known proton affinities of gas-phase molecules, we determine the proton affinity of the different surface sites of In2O3 with atomic precision. Measurements on hydroxylated titanium dioxide and zirconium oxide extend our method to other oxides.

10.
Rev Sci Instrum ; 91(7): 074701, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752833

ABSTRACT

A transimpedance amplifier has been designed for scanning tunneling microscopy (STM). The amplifier features low noise (limited by the Johnson noise of the 1 GΩ feedback resistor at low input current and low frequencies), sufficient bandwidth for most STM applications (50 kHz at 35 pF input capacitance), a large dynamic range (0.1 pA-50 nA without range switching), and a low input voltage offset. The amplifier is also suited for placing its first stage into the cryostat of a low-temperature STM, minimizing the input capacitance and reducing the Johnson noise of the feedback resistor. The amplifier may also find applications for specimen current imaging and electron-beam-induced current measurements in scanning electron microscopy and as a photodiode amplifier with a large dynamic range. This paper also discusses the sources of noise including the often neglected effect of non-balanced input impedance of operational amplifiers and describes how to accurately measure and adjust the frequency response of low-current transimpedance amplifiers.

11.
Proc Natl Acad Sci U S A ; 117(26): 14827-14837, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32527857

ABSTRACT

Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve [Formula: see text] adsorption on the rutile [Formula: see text](110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed [Formula: see text] molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.

12.
Angew Chem Int Ed Engl ; 58(39): 13961-13968, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31339617

ABSTRACT

Single-atom catalysts (SACs) bridge homo- and heterogeneous catalysis because the active site is a metal atom coordinated to surface ligands. The local binding environment of the atom should thus strongly influence how reactants adsorb. Now, atomically resolved scanning-probe microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and DFT are used to study how CO binds at different Ir1 sites on a precisely defined Fe3 O4 (001) support. The two- and five-fold-coordinated Ir adatoms bind CO more strongly than metallic Ir, and adopt structures consistent with square-planar IrI and octahedral IrIII complexes, respectively. Ir incorporates into the subsurface already at 450 K, becoming inactive for adsorption. Above 900 K, the Ir adatoms agglomerate to form nanoparticles encapsulated by iron oxide. These results demonstrate the link between SAC systems and coordination complexes, and that incorporation into the support is an important deactivation mechanism.

13.
Phys Rev Lett ; 122(1): 016805, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012645

ABSTRACT

Polaron formation plays a major role in determining the structural, electrical, and chemical properties of ionic crystals. Using a combination of first-principles calculations, scanning tunneling microscopy, and atomic force microscopy, we analyze the interaction of polarons with CO molecules adsorbed on the reduced rutile TiO_{2}(110) surface. Adsorbed CO shows attractive coupling with polarons in the surface layer, and repulsive interaction with polarons in the subsurface layer. As a result, CO adsorption depends on the reduction state of the sample. For slightly reduced surfaces, many adsorption configurations with comparable adsorption energies exist and polarons reside in the subsurface layer. At strongly reduced surfaces, two adsorption configurations dominate: either inside an oxygen vacancy, or at surface Ti_{5c} sites, coupled with a surface polaron. Similar conclusions are predicted for TiO_{2}(110) surfaces containing near-surface Ti interstitials. These results show that polarons are of primary importance for understanding the performance of polar semiconductors and transition metal oxides in catalysis and energy-related applications.

14.
J Mater Chem A Mater ; 6(14): 5703-5713, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-30009023

ABSTRACT

Activating the O2 molecule is at the heart of a variety of technological applications, most prominently in energy conversion schemes including solid oxide fuel cells, electrolysis, and catalysis. Perovskite oxides, both traditionally-used and novel formulations, are the prime candidates in established and emerging energy devices. This work shows that the as-cleaved and unmodified CaO-terminated (001) surface of Ca3Ru2O7, a Ruddlesden-Popper perovskite, supports a full monolayer of superoxide ions, O2-, when exposed to molecular O2. The electrons for activating the molecule are transferred from the subsurface RuO2 layer. Theoretical calculations using both, density functional theory (DFT) and more accurate methods (RPA), predict the adsorption of O2- with Eads = 0.72 eV and provide a thorough analysis of the charge transfer. Non-contact atomic force microscopy (nc-AFM) and scanning tunnelling microscopy (STM) are used to resolve single molecules and confirm the predicted adsorption structures. Local contact potential difference (LCPD) and X-ray photoelectron spectroscopy (XPS) measurements on the full monolayer of O2- confirm the negative charge state of the molecules. The present study reports the rare case of an oxide surface without dopants, defects, or low-coordinated sites readily activating molecular O2.

15.
Proc Natl Acad Sci U S A ; 115(25): E5642-E5650, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866854

ABSTRACT

Determining the structure of water adsorbed on solid surfaces is a notoriously difficult task and pushes the limits of experimental and theoretical techniques. Here, we follow the evolution of water agglomerates on Fe3O4(001); a complex mineral surface relevant in both modern technology and the natural environment. Strong OH-H2O bonds drive the formation of partially dissociated water dimers at low coverage, but a surface reconstruction restricts the density of such species to one per unit cell. The dimers act as an anchor for further water molecules as the coverage increases, leading first to partially dissociated water trimers, and then to a ring-like, hydrogen-bonded network that covers the entire surface. Unraveling this complexity requires the concerted application of several state-of-the-art methods. Quantitative temperature-programmed desorption (TPD) reveals the coverage of stable structures, monochromatic X-ray photoelectron spectroscopy (XPS) shows the extent of partial dissociation, and noncontact atomic force microscopy (AFM) using a CO-functionalized tip provides a direct view of the agglomerate structure. Together, these data provide a stringent test of the minimum-energy configurations determined via a van der Waals density functional theory (DFT)-based genetic search.

16.
J Phys Chem C Nanomater Interfaces ; 122(3): 1657-1669, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29492182

ABSTRACT

The α-Fe2O3(11̅02) surface (also known as the hematite r-cut or (012) surface) was studied using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), noncontact atomic force microscopy (nc-AFM), and ab initio density functional theory (DFT)+U calculations. Two surface structures are stable under ultrahigh vacuum (UHV) conditions; a stoichiometric (1 × 1) surface can be prepared by annealing at 450 °C in ≈10-6 mbar O2, and a reduced (2 × 1) reconstruction is formed by UHV annealing at 540 °C. The (1 × 1) surface is close to an ideal bulk termination, and the undercoordinated surface Fe atoms reduce the surface bandgap by ≈0.2 eV with respect to the bulk. The work function is measured to be 5.7 ± 0.2 eV, and the VBM is located 1.5 ± 0.1 eV below EF. The images obtained from the (2 × 1) reconstruction cannot be reconciled with previously proposed models, and a new "alternating trench" structure is proposed based on an ordered removal of lattice oxygen atoms. DFT+U calculations show that this surface is favored in reducing conditions and that 4-fold-coordinated Fe2+ cations at the surface introduce gap states approximately 1 eV below EF. The work function on the (2 × 1) termination is 5.4 ± 0.2 eV.

17.
ACS Appl Mater Interfaces ; 10(16): 14175-14182, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29589447

ABSTRACT

The performance of an organic semiconductor device is critically determined by the geometric alignment, orientation, and ordering of the organic molecules. Although an organic multilayer eventually adopts the crystal structure of the organic material, the alignment and configuration at the interface with the substrate/electrode material are essential for charge injection into the organic layer. This work focuses on the prototypical organic semiconductor para-sexiphenyl (6P) adsorbed on In2O3(111), the thermodynamically most stable surface of the material that the most common transparent conducting oxide, indium tin oxide, is based on. The onset of nucleation and formation of the first monolayer are followed with atomically resolved scanning tunneling microscopy and noncontact atomic force microscopy (nc-AFM). Annealing to 200 °C provides sufficient thermal energy for the molecules to orient themselves along the high-symmetry directions of the surface, leading to a single adsorption site. The AFM data suggests an essentially planar adsorption geometry. With increasing coverage, the 6P molecules first form a loose network with a poor long-range order. Eventually, the molecules reorient into an ordered monolayer. This first monolayer has a densely packed, well-ordered (2 × 1) structure with one 6P per In2O3(111) substrate unit cell, that is, a molecular density of 5.64 × 1013 cm-2.

18.
Science ; 359(6375): 572-575, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29420289

ABSTRACT

The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy-a "polar catastrophe"-that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO3) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO2 stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.

19.
ACS Catal ; 7(10): 7081-7091, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29034122

ABSTRACT

The photoactivity of methanol adsorbed on the anatase TiO2 (101) surface was studied by a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations. Isolated methanol molecules adsorbed at the anatase (101) surface show a negligible photoactivity. Two ways of methanol activation were found. First, methoxy groups formed by reaction of methanol with coadsorbed O2 molecules or terminal OH groups are photoactive, and they turn into formaldehyde upon UV illumination. The methoxy species show an unusual C 1s core-level shift of 1.4 eV compared to methanol; their chemical assignment was verified by DFT calculations with inclusion of final-state effects. The second way of methanol activation opens at methanol coverages above 0.5 monolayer (ML), and methyl formate is produced in this reaction pathway. The adsorption of methanol in the coverage regime from 0 to 2 ML is described in detail; it is key for understanding the photocatalytic behavior at high coverages. There, a hydrogen-bonding network is established in the adsorbed methanol layer, and consequently, methanol dissociation becomes energetically more favorable. DFT calculations show that dissociation of the methanol molecule is always the key requirement for hole transfer from the substrate to the adsorbed methanol. We show that the hydrogen-bonding network established in the methanol layer dramatically changes the kinetics of proton transfer during the photoreaction.

20.
Proc Natl Acad Sci U S A ; 114(13): E2556-E2562, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289217

ABSTRACT

Activation of molecular oxygen is a key step in converting fuels into energy, but there is precious little experimental insight into how the process proceeds at the atomic scale. Here, we show that a combined atomic force microscopy/scanning tunneling microscopy (AFM/STM) experiment can both distinguish neutral O2 molecules in the triplet state from negatively charged (O2)- radicals and charge and discharge the molecules at will. By measuring the chemical forces above the different species adsorbed on an anatase TiO2 surface, we show that the tip-generated (O2)- radicals are identical to those created when (i) an O2 molecule accepts an electron from a near-surface dopant or (ii) when a photo-generated electron is transferred following irradiation of the anatase sample with UV light. Kelvin probe spectroscopy measurements indicate that electron transfer between the TiO2 and the adsorbed molecules is governed by competition between electron affinity of the physisorbed (triplet) O2 and band bending induced by the (O2)- radicals. Temperature-programmed desorption and X-ray photoelectron spectroscopy data provide information about thermal stability of the species, and confirm the chemical identification inferred from AFM/STM.

SELECTION OF CITATIONS
SEARCH DETAIL
...