Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746040

ABSTRACT

Gutters made of glass-fibre-reinforced polymer (GFRP) are usually produced with a three-millimetre thickness. The fillers are mixed into unsaturated polyester (UP) resin, which is intended to make the composite material more affordable. This study aims to examine the effects of the addition of alumina trihydrate (ATH), calcium carbonate (CC), and a mixture of ATH and CC of 15 and 30 parts per hundredweight of resins (PHR) on the material properties of the three-millimetre-thick three-layered GFRP composites. The properties observed included physical properties, namely, specific gravity and water absorption, chemical properties such as burning rate, and mechanical properties such as hardness, flexural strength, and toughness. The effects of the fillers on the voids and interfacial bond between the reinforcing fibre and matrix were analysed using the flexural fracture observation through scanning electron microscopy (SEM). The results showed that the addition of fillers into the UP resin led to an increase in the density, hardness, flexural strength, modulus of elasticity, and toughness but a decrease in water absorption and burning rate in a horizontal position. This information can be helpful for manufacturers of gutters made of GFRP in selecting the appropriate constituent materials while considering the technical and economic properties.

2.
Polymers (Basel) ; 14(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406147

ABSTRACT

It is difficult to obtain suitable fire resistance and mechanical properties for glass-fiber-reinforced polymer (GFRP) roof material in industrial applications. Although some efforts to improve the fire resistance properties of GFRP have been carried out, in practice this sometimes degrades the mechanical properties. Therefore, the base materials, such as filler and reinforcing fiber, must be appropriately combined to simultaneously improve both fire resistance and mechanical properties. The present study examines improvements in GFRP roof material by investigating the effect of aluminium trihydrate (ATH) as a filler and the combination of a chopped strand mat (CSM) with woven roving (WR) and stitched mat (STM) fibers as the reinforcement in a composite GFRP roof structure. The roof samples were prepared following industrial machine standards using the specified materials. The mechanical properties of GFRP were evaluated using tensile, flexural and impact tests, following ASTM D638, ASTM D790 and ASTM D256 standards, respectively. The fire properties were examined through fire tests following the ASTM D635 standard. The results show that the GFRP roof composed of CSM/WR fibers had a 40% higher tensile strength (103.5 MPa) compared with the GFRP roof without CSM fibers (73.8 MPa). The flexural strength of the GFRP roof with CSM/WR fibers was also 57% higher than the roof without fibers, with a ratio of 315.61 MPa to 201 MPa. With the use of CSM/WR fibers, the fire resistance also increased by 23%, resulting in a ratio of 4.31 mm/min to 5.32 mm/min. These results demonstrate that the combination of CSM/WR fibers as a reinforcement would be an excellent option for producing an improved GFRP roof with better industrial properties, especially when producing improved GFRP roofs using a continuous lamination machine.

SELECTION OF CITATIONS
SEARCH DETAIL
...