Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Elife ; 122024 May 03.
Article in English | MEDLINE | ID: mdl-38700995

ABSTRACT

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Subject(s)
Drosophila melanogaster , Lesch-Nyhan Syndrome , Animals , Drosophila melanogaster/physiology , Drosophila melanogaster/genetics , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Purines/metabolism , Disease Models, Animal , Behavior, Animal , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/deficiency , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Locomotion
2.
Sleep Med Rev ; 74: 101894, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157687

ABSTRACT

Sleep disorders are commonplace in our modern societies. Specialized hospital departments are generally overloaded, and sleep assessment is an expensive process in terms of equipment, human resources, and time. Biomarkers would usefully complement current measures in the screening and follow-up of sleep disorders and their daytime repercussions. Among salivary markers, a growing body of literature suggests that salivary α-amylase (sAA) may be a cross-species marker of sleep debt. However, there is no consensus as to the direction of variation in sAA with sleep disorders. Herein, after describing the mechanisms of sAA secretion and its relationship with stress, studies assessing the relationship between sAA and sleep parameters are reviewed. Finally, the influence of confounding factors is discussed, along with methodological considerations, to better understand the fluctuations in sAA and facilitate future studies in the field.


Subject(s)
Salivary alpha-Amylases , Humans , Saliva , Sleep , Sleep Deprivation , Hydrocortisone
3.
Cell Rep ; 42(9): 113025, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37682712

ABSTRACT

The Pallidin protein is a central subunit of a multimeric complex called biogenesis of lysosome-related organelles complex 1 (BLOC1) that regulates specific endosomal functions and has been linked to schizophrenia. We show here that downregulation of Pallidin and other members of BLOC1 in the surface glia, the Drosophila equivalent of the blood-brain barrier, reduces and delays nighttime sleep in a circadian-clock-dependent manner. In agreement with BLOC1 involvement in amino acid transport, downregulation of the large neutral amino acid transporter 1 (LAT1)-like transporters JhI-21 and mnd, as well as of TOR (target of rapamycin) amino acid signaling, phenocopy Pallidin knockdown. Furthermore, supplementing food with leucine normalizes the sleep/wake phenotypes of Pallidin downregulation, and we identify a role for Pallidin in the subcellular trafficking of JhI-21. Finally, we provide evidence that Pallidin in surface glia is required for GABAergic neuronal activity. These data identify a BLOC1 function linking essential amino acid availability and GABAergic sleep/wake regulation.

5.
Front Neurosci ; 16: 991528, 2022.
Article in English | MEDLINE | ID: mdl-36161153

ABSTRACT

Objectives: Sleepiness is associated with decreased cognitive abilities and remains one of the main causes of fatal road accidents. The tools currently available to assess sleepiness, such as questionnaires, are subject to intra- and inter-individual variability, while multiple sleep latency tests are only feasible in few sleep laboratories. The main objective of this study was to explore new potential markers (neurocognitive, biological) to objectively assess sleepiness in drivers. Methods: A total of 186 drivers (median age 44 years, range 20-74 years, 73% men, 14% obese) were included during a break at a highway service area, in the morning, while on the road for vacation. Questionnaires on sleepiness and sleep characteristics (habitual and on the night before travel), the Bron-Lyon Attention Stability Test (BLAST), and two salivary samples (α-amylase and oxalate) were collected. Associations between measures of sleepiness [Epworth Sleepiness Scale (ESS), and Stanford Sleepiness Scale (SSS)], sleep characteristics, neurocognitive, and biological markers were tested using regression models adjusted for confounding factors. Results: The night before travel, 83% of the drivers reduced their sleep time and 30% slept 5 h or less. The higher the number of miles to be traveled, the higher the decrease, and the shorter the sleep time. The night before travel, 18 and 24% of the drivers complained of poor sleep quality and difficulty falling asleep. The sleep characteristics on the night before travel were associated with the habitual sleep characteristics. At the time of the test, 47% of the drivers scored pathologically on the SSS. Poor sleep quality and difficulty falling asleep the night before travel were associated with increased sleepiness as assessed by the SSS and decreased attentional ability as assessed by the BLAST. No association between salivary markers and acute sleepiness was observed. Conclusions: The sleep characteristics of the night before travel were associated with sleepiness and attentional performance. The SSS and the BLAST could be used by individual drivers in a self-evaluation context. Biological markers showed a high variability and limited association with sleep parameters across subjects, emphasizing the need for within-subject designs to assess their usefulness.

6.
J Clin Med ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348677

ABSTRACT

High cognitive functioning could be a protective factor for school difficulties, behavioral and mood impairments in children with narcolepsy. To investigate this factor, we studied the intellectual abilities of 74 children with narcolepsy (43 boys, 11.7 years old at diagnosis, 91% of cataplexies, 64% obese, 100% HLA positive for DR-DQB1*06:02). All children underwent a one-night polysomnography followed by Multiple Sleep Latency Tests, an evaluation of intelligence quotient (IQ), and filled standardized questionnaires. Thirty-eight percent had high potentialities (HP defined by IQ > 130) and 48% had school difficulties. Using non-parametric tests, we found that HP children reported less difficulties at school and tended to have less impulsivity, conduct, and learning disorders than those without HP. They also tended to be less obese and had less desaturation. Using a multivariate regression analysis, we found an association between the REM sleep percentage and the IQ. REM sleep could be involved in the dynamic changes contributing to the equilibrium of intellectual functioning. This study highlights that despite their frequent school difficulties, narcolepsy per se is unlikely to be a cause of intellectual disability in children. Prompt diagnosis and management of comorbidities such as obesity and obstructive sleep apnea (OSA) could improve cognitive and school performances in these children.

7.
Sci Rep ; 10(1): 20023, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208773

ABSTRACT

Glial cells are early sensors of neuronal injury and can store lipids in lipid droplets under oxidative stress conditions. Here, we investigated the functions of the RNA-binding protein, SPEN/SHARP, in the context of Parkinson's disease (PD). Using a data-mining approach, we found that SPEN/SHARP is one of many astrocyte-expressed genes that are significantly differentially expressed in the substantia nigra of PD patients compared with control subjects. Interestingly, the differentially expressed genes are enriched in lipid metabolism-associated genes. In a Drosophila model of PD, we observed that flies carrying a loss-of-function allele of the ortholog split-ends (spen) or with glial cell-specific, but not neuronal-specific, spen knockdown were more sensitive to paraquat intoxication, indicating a protective role for Spen in glial cells. We also found that Spen is a positive regulator of Notch signaling in adult Drosophila glial cells. Moreover, Spen was required to limit abnormal accumulation of lipid droplets in glial cells in a manner independent of its regulation of Notch signaling. Taken together, our results demonstrate that Spen regulates lipid metabolism and storage in glial cells and contributes to glial cell-mediated neuroprotection.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Lipid Droplets/chemistry , Neuroglia/cytology , Paraquat/toxicity , Parkinson Disease/prevention & control , RNA-Binding Proteins/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Herbicides/toxicity , Homeodomain Proteins/genetics , Male , Neuroglia/drug effects , Neuroglia/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , RNA-Binding Proteins/genetics
8.
Sleep ; 41(10)2018 10 01.
Article in English | MEDLINE | ID: mdl-30016498

ABSTRACT

Amino acid transporters are involved in functions reportedly linked to the sleep/wake cycle: neurotransmitter synthesis and recycling, the regulation of synaptic strength, protein synthesis, and energy metabolism. In addition, the existence of bidirectional relationships among extracellular content, transport systems, and sleep/wake states is receiving emerging support. Nevertheless, the connection between amino acid transport and sleep/wake regulation remains elusive. To address this question, we used Drosophila melanogaster and investigated the role of LAT1 (large neutral amino acid transporter 1) transporters. We show that the two Drosophila LAT1-like transporters: Juvenile hormone Inducible-21 and minidiscs (Mnd) are required in dopaminergic neurons for sleep/wake regulation. Down-regulating either gene in dopaminergic neurons resulted in higher daily sleep and longer sleep bout duration during the night, suggesting a defect in dopaminergic transmission. Since LAT1 transporters can mediate in mammals the uptake of L-DOPA, a precursor of dopamine, we assessed amino acid transport efficiency by L-DOPA feeding. We find that downregulation of JhI-21, but not Mnd, reduced the sensitivity to L-DOPA as measured by sleep loss. JhI-21 downregulation also attenuated the sleep loss induced by continuous activation of dopaminergic neurons. Since LAT1 transporters are known to regulate target of rapamycin (TOR) signaling, we investigated the role of this amino acid sensing pathway in dopaminergic neurons. Consistently, we report that TOR activity in dopaminergic neurons modulates sleep/wake states. Altogether, this study provides evidence that LAT1-mediated amino acid transport in dopaminergic neurons is playing a significant role in sleep/wake regulation and is providing several entry points to elucidate the role of nutrients such as amino acids in sleep/wake regulation.


Subject(s)
Amino Acid Transport Systems/metabolism , Dopaminergic Neurons/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Sleep/physiology , Animals , Biological Transport , Dopamine/metabolism , Down-Regulation , Drosophila , Drosophila melanogaster/genetics , Female , Levodopa , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
9.
Front Neural Circuits ; 11: 79, 2017.
Article in English | MEDLINE | ID: mdl-29109678

ABSTRACT

Although patients with primary insomnia experience sleep disruption, they are able to maintain normal performance on a variety of cognitive tasks. This observation suggests that insomnia may be a condition where predisposing factors simultaneously increase the risk for insomnia and also mitigate against the deleterious consequences of waking. To gain insight into processes that might regulate sleep and buffer neuronal circuits during sleep loss, we manipulated three genes, fat facet (faf), highwire (hiw) and the GABA receptor Resistance to dieldrin (Rdl), that were differentially modulated in a Drosophila model of insomnia. Our results indicate that increasing faf and decreasing hiw or Rdl within wake-promoting large ventral lateral clock neurons (lLNvs) induces sleep loss. As expected, sleep loss induced by decreasing hiw in the lLNvs results in deficits in short-term memory and increases of synaptic growth. However, sleep loss induced by knocking down Rdl in the lLNvs protects flies from sleep-loss induced deficits in short-term memory and increases in synaptic markers. Surprisingly, decreasing hiw and Rdl within the Mushroom Bodies (MBs) protects against the negative effects of sleep deprivation (SD) as indicated by the absence of a subsequent homeostatic response, or deficits in short-term memory. Together these results indicate that specific genes are able to disrupt sleep and protect against the negative consequences of waking in a circuit dependent manner.


Subject(s)
Drosophila Proteins/metabolism , Endopeptidases/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Receptors, GABA-A/metabolism , Sleep Deprivation/metabolism , Sleep Initiation and Maintenance Disorders/metabolism , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila , Drosophila Proteins/genetics , Endopeptidases/genetics , Homeostasis/genetics , Homeostasis/physiology , Learning , Memory, Short-Term/physiology , Motor Activity/genetics , Motor Activity/physiology , Mushroom Bodies/metabolism , Mushroom Bodies/pathology , Nerve Tissue Proteins/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Neurons/pathology , Receptors, GABA-A/genetics , Sleep Deprivation/genetics , Sleep Deprivation/pathology , Sleep Initiation and Maintenance Disorders/genetics , Sleep Initiation and Maintenance Disorders/pathology , Synapses/genetics , Synapses/metabolism , Synapses/pathology
10.
J Neurosci ; 37(16): 4289-4300, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28314820

ABSTRACT

Amyloid precursor protein (App) plays a crucial role in Alzheimer's disease via the production and deposition of toxic ß-amyloid peptides. App is heavily expressed in neurons, the focus of the vast majority of studies investigating its function. Meanwhile, almost nothing is known about App's function in glia, where it is also expressed, and can potentially participate in the regulation of neuronal physiology. In this report, we investigated whether Appl, the Drosophila homolog of App, could influence sleep-wake regulation when its function is manipulated in glial cells. Appl inhibition in astrocyte-like and cortex glia resulted in higher sleep amounts and longer sleep bout duration during the night, while overexpression had the opposite effect. These sleep phenotypes were not the result of developmental defects, and were correlated with changes in expression in glutamine synthetase (GS) in astrocyte-like glia and in changes in the gap-junction component innexin2 in cortex glia. Downregulating both GS and innexin2, but not either one individually, resulted in higher sleep amounts, similarly to Appl inhibition. Consistent with these results, the expression of GS and innexin2 are increased following sleep deprivation, indicating that GS and innexin2 genes are dynamically linked to vigilance states. Interestingly, the reduction of GS expression and the sleep phenotype observed upon Appl inhibition could be rescued by increasing the expression of the glutamate transporter dEaat1. In contrast, reducing dEaat1 expression severely disrupted sleep. These results associate glutamate recycling, sleep, and a glial function for the App family proteins.SIGNIFICANCE STATEMENT The amyloid precursor protein (App) has been intensively studied for its implication in Alzheimer's disease (AD). The attributed functions of App are linked to the physiology and cellular biology of neurons where the protein is predominantly expressed. Consequences on glia in AD are generally thought to be secondary effects of the pathology in neurons. Researchers still do not know whether App plays a role in glia in nonpathological conditions. We report here that glial App plays a role in physiology and in the regulation of sleep/wake, which has been shown recently to be involved in AD pathology. These results also associate glutamate recycling and sleep regulation, adding further complexity to the physiological role of App and to its implication in AD.


Subject(s)
Brain/metabolism , Drosophila Proteins/genetics , Glutamic Acid/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Neuroglia/metabolism , Sleep/genetics , Animals , Brain/physiology , Connexins/genetics , Connexins/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila/physiology , Drosophila Proteins/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Female , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
11.
PLoS Genet ; 13(1): e1006507, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28072817

ABSTRACT

Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.


Subject(s)
Aging/genetics , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Dopaminergic Neurons/metabolism , Drosophila Proteins/genetics , Drosophila/genetics , Locomotion/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Brain/cytology , Brain/growth & development , Brain/metabolism , CLOCK Proteins/metabolism , Drosophila/growth & development , Drosophila Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
13.
Brain Behav Immun ; 47: 75-85, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25451614

ABSTRACT

Individuals frequently find themselves confronted with a variety of challenges that threaten their wellbeing. While some individuals face these challenges efficiently and thrive (resilient) others are unable to cope and may suffer persistent consequences (vulnerable). Resilience/vulnerability to sleep disruption may contribute to the vulnerability of individuals exposed to challenging conditions. With that in mind we exploited individual differences in a fly's ability to form short-term memory (STM) following 3 different types of sleep disruption to identify the underlying genes. Our analysis showed that in each category of flies examined, there are individuals that form STM in the face of sleep loss (resilient) while other individuals show dramatic declines in cognitive behavior (vulnerable). Molecular genetic studies revealed that Antimicrobial Peptides, factors important for innate immunity, were candidates for conferring resilience/vulnerability to sleep deprivation. Specifically, Metchnikowin (Mtk), drosocin (dro) and Attacin (Att) transcript levels seemed to be differentially increased by sleep deprivation in glia (Mtk), neurons (dro) or primarily in the head fat body (Att). Follow-up genetic studies confirmed that expressing Mtk in glia but not neurons, and expressing dro in neurons but not glia, disrupted memory while modulating sleep in opposite directions. These data indicate that various factors within glia or neurons can contribute to individual differences in resilience/vulnerability to sleep deprivation.


Subject(s)
Neuroglia/immunology , Neurons/immunology , Sleep Deprivation/immunology , Sleep/immunology , Animals , Behavior, Animal/physiology , Drosophila , Individuality , Memory, Short-Term/physiology
14.
Sleep ; 38(5): 801-14, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25409104

ABSTRACT

BACKGROUND AND STUDY OBJECTIVES: Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. DESIGN: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. SETTING: Laboratory. PATIENTS OR PARTICIPANTS: Drosophila melanogaster. INTERVENTIONS: Sleep deprivation and starvation. MEASUREMENTS AND RESULTS: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. CONCLUSIONS: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis.


Subject(s)
Adaptation, Physiological/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Genetic Predisposition to Disease/genetics , Sleep Deprivation/genetics , Starvation/genetics , Animals , Female , Gene Expression Profiling , Gene Knockdown Techniques , Homeostasis/genetics , Lipid Metabolism/genetics , Male , Mutation/genetics , Oligonucleotide Array Sequence Analysis , RNA Interference , RNA, Messenger/analysis , RNA, Messenger/genetics , Sleep/physiology , Sleep Deprivation/physiopathology , Starvation/physiopathology , Time Factors , Wakefulness/genetics
15.
Sleep ; 35(10): 1377-1384B, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23024436

ABSTRACT

OBJECTIVES: Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. DESIGN: Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. RESULTS: Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. CONCLUSIONS: Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.


Subject(s)
Circadian Rhythm/physiology , Memory/physiology , Sleep Deprivation/physiopathology , Animals , Circadian Rhythm/genetics , Conditioning, Classical/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Mutation/genetics , Mutation/physiology
16.
Sleep ; 35(1): 103-11, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22215924

ABSTRACT

STUDY OBJECTIVES: Novel, safe, and efficient hypnotic compounds capable of enhancing physiological sleep are still in great demand in the therapy of insomnia. This study compares the sleep-wake effects of a new α1 GABA(A) receptor subunit ligand, GF-015535-00, with those of zolpidem, the widely utilized hypnotic compound. METHODS: Nine C57Bl6/J male mice were chronically implanted with electrodes for EEG and sleep-wake monitoring. Each mouse received 3 doses of GF-015535-00 and zolpidem. Time spent in sleep-wake states and cortical EEG power spectra were analyzed. RESULTS: Both zolpidem and GF-015535-00 prominently enhanced slow wave sleep and paradoxical sleep in the mouse. However, as compared with zolpidem, GF-015535-00 showed several important differences: (1) a comparable sleep-enhancing effect was obtained with a 10 fold smaller dose; (2) the induced sleep was less fragmented; (3) the risk of subsequent wake rebound was less prominent; and (4) the cortical EEG power ratio between slow wave sleep and wake was similar to that of natural sleep and thus compatible with physiological sleep. CONCLUSION: The characteristics of the sleep-wake effects of GF-015535-00 in mice could be potentially beneficial for its use as a therapeutic compound in the treatment of insomnia. Further investigations are required to assess whether the same characteristics are conserved in other animal models and humans.


Subject(s)
Hypnotics and Sedatives/pharmacology , Receptors, GABA-A/drug effects , Sleep/drug effects , Animals , Brain/drug effects , Brain/physiology , Dose-Response Relationship, Drug , Electroencephalography/drug effects , Male , Mice , Mice, Inbred C57BL , Pyridines/pharmacology , Sleep/physiology , Sleep Stages/drug effects , Sleep Stages/physiology , Zolpidem
17.
Curr Biol ; 21(10): 835-40, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21549599

ABSTRACT

The role of the transmembrane receptor Notch in the adult brain is poorly understood. Here, we provide evidence that bunched, a negative regulator of Notch, is involved in sleep homeostasis. Genetic evidence indicates that interfering with bunched activity in the mushroom bodies (MBs) abolishes sleep homeostasis. Combining bunched and Delta loss-of-function mutations rescues normal homeostasis, suggesting that Notch signaling may be involved in regulating sensitivity to sleep loss. Preventing the downregulation of Delta by overexpressing a wild-type transgene in MBs reduces sleep homeostasis and, importantly, prevents learning impairments induced by sleep deprivation. Similar resistance to sleep loss is observed with Notch(spl-1) gain-of-function mutants. Immunohistochemistry reveals that the Notch receptor is expressed in glia, whereas Delta is localized in neurons. Importantly, the expression in glia of the intracellular domain of Notch, a dominant activated form of the receptor, is sufficient to prevent learning deficits after sleep deprivation. Together, these results identify a novel neuron-glia signaling pathway dependent on Notch and regulated by bunched. These data highlight the emerging role of neuron-glia interactions in regulating both sleep and learning impairments associated with sleep loss.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Homeostasis/physiology , Receptors, Notch/metabolism , Signal Transduction/physiology , Sleep/physiology , Adult , Analysis of Variance , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Learning/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Confocal , Mushroom Bodies/metabolism , Mutation/genetics , Neuroglia/metabolism , Neurons/metabolism , Polymerase Chain Reaction
18.
Sleep ; 34(2): 137-46, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21286249

ABSTRACT

STUDY OBJECTIVES: Multiple lines of evidence indicate that sleep is important for the developing brain, although little is known about which cellular and molecular pathways are affected. Thus, the aim of this study was to determine whether the early adult life of Drosophila, which is associated with high amounts of sleep and critical periods of brain plasticity, could be used as a model to identify developmental processes that require sleep. SUBJECTS: Wild type Canton-S Drosophila melanogaster. DESIGN; INTERVENTION: Flies were sleep deprived on their first full day of adult life and allowed to recover undisturbed for at least 3 days. The animals were then tested for short-term memory and response-inhibition using aversive phototaxis suppression (APS). Components of dopamine signaling were further evaluated using mRNA profiling, immunohistochemistry, and pharmacological treatments. MEASUREMENTS AND RESULTS: Flies exposed to acute sleep deprivation on their first day of life showed impairments in short-term memory and response inhibition that persisted for at least 6 days. These impairments in adult performance were reversed by dopamine agonists, suggesting that the deficits were a consequence of reduced dopamine signaling. However, sleep deprivation did not impact dopaminergic neurons as measured by their number or by the levels of dopamine, pale (tyrosine hydroxylase), dopadecarboxylase, and the Dopamine transporter. However, dopamine pathways were impacted as measured by increased transcript levels of the dopamine receptors D2R and dDA1. Importantly, blocking signaling through the dDA1 receptor in animals that were sleep deprived during their critical developmental window prevented subsequent adult learning impairments. CONCLUSIONS: These data indicate that sleep plays an important and phylogenetically conserved role in the developing brain.


Subject(s)
Learning Disabilities/etiology , Learning Disabilities/physiopathology , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Age Factors , Animals , Behavior, Animal , Brain/growth & development , Brain/metabolism , Brain/physiopathology , Dopamine Agonists/administration & dosage , Drosophila melanogaster , Female , Male , Memory, Short-Term , Receptors, Dopamine/metabolism , Sleep Deprivation/metabolism , Time
19.
Proc Natl Acad Sci U S A ; 108(2): 834-9, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21187381

ABSTRACT

The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.


Subject(s)
Central Nervous System/physiology , Dopamine/deficiency , Drosophila/physiology , Animals , Behavior, Animal , Brain/metabolism , Dopamine/physiology , Frameshift Mutation , Homozygote , Levodopa/chemistry , Memory , Movement , Neurotransmitter Agents/metabolism , Smell , Time Factors , Tyrosine 3-Monooxygenase/genetics
20.
PLoS Biol ; 8(8)2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20824166

ABSTRACT

Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Homeostasis , Learning/drug effects , Sleep , Animals , Carrier Proteins , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Learning/physiology , Lipid Metabolism , Mutation , Perilipin-1 , Phosphoproteins/chemistry , Sleep/physiology , Sleep Deprivation , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...