Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 44(8): 974-982, 2023 08.
Article in English | MEDLINE | ID: mdl-37474265

ABSTRACT

BACKGROUND AND PURPOSE: Prior studies have found an association between calcification and the epileptogenicity of tubers in tuberous sclerosis complex. Quantitative susceptibility mapping is a novel tool sensitive to magnetic susceptibility alterations due to tissue calcification. We assessed the utility of quantitative susceptibility mapping in identifying putative epileptogenic tubers in tuberous sclerosis complex using stereoelectroencephalography data as ground truth. MATERIALS AND METHODS: We studied patients with tuberous sclerosis complex undergoing stereoelectroencephalography at a single center who had multiecho gradient-echo sequences available. Quantitative susceptibility mapping and R2* values were extracted for all tubers on the basis of manually drawn 3D ROIs using T1- and T2-FLAIR sequences. Characteristics of quantitative susceptibility mapping and R2* distributions from implanted tubers were compared using binary logistic generalized estimating equation models designed to identify ictal (involved in seizure onset) and interictal (persistent interictal epileptiform activity) tubers. These models were then applied to the unimplanted tubers to identify potential ictal and interictal tubers that were not sampled by stereoelectroencephalography. RESULTS: A total of 146 tubers were identified in 10 patients, 76 of which were sampled using stereoelectroencephalography. Increased kurtosis of the tuber quantitative susceptibility mapping values was associated with epileptogenicity (P = .04 for the ictal group and P = .005 for the interictal group) by the generalized estimating equation model. Both groups had poor sensitivity (35.0% and 44.1%, respectively) but high specificity (94.6% and 78.6%, respectively). CONCLUSIONS: Our finding of increased kurtosis of quantitative susceptibility mapping values (heavy-tailed distribution) was highly specific, suggesting that it may be a useful biomarker to identify putative epileptogenic tubers in tuberous sclerosis complex. This finding motivates the investigation of underlying tuber mineralization and other properties driving kurtosis changes in quantitative susceptibility mapping values.


Subject(s)
Tuberous Sclerosis , Humans , Pilot Projects , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , Magnetic Resonance Imaging , Electroencephalography
2.
Neuroimage Clin ; 3: 515-21, 2013.
Article in English | MEDLINE | ID: mdl-24273734

ABSTRACT

Prolonged febrile seizures (PFS) are the commonest cause of childhood status epilepticus and are believed to carry a risk of neuronal damage, in particular to the mesial temporal lobe. This study was designed to determine: i) the effect of prolonged febrile seizures on white matter and ii) the temporal evolution of any changes seen. 33 children were recruited 1 month following PFS and underwent diffusion tensor imaging (DTI) with repeat imaging at 6 and 12 months after the original episode of PFS. 18 age-matched healthy control subjects underwent similar investigations at a single time point. Tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) between patients and controls on a voxel-wise basis within the white matter skeleton. Widespread reductions in FA along multiple white matter tracts were found at 1 and 6 months post-PFS, but these had resolved at 12 months. At one month post-PFS the main changes seen were reductions in AD but at 6 months these had predominantly changed to increases in RD. These widespread white matter changes have not previously been noted following PFS. There are many possible explanations, but one plausible hypothesis is that this represents a temporary halting of normal white matter development caused by the seizure, that then resumes and normalises in the majority of children.

3.
IEEE Trans Nanobioscience ; 8(3): 219-25, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19278933

ABSTRACT

In this paper, we report on the influence of shallow micro- and nanopatterned substrata on the attachment and behavior of a human fibroblast [human telomerase transfected immortalized (hTERT)] cells. We identify a hierarchy of textural guidance cues with respect to cell alignment on these substrates. Cells were seeded and cultured for 48 h on silicon substrates patterned with two linear textures overlaid at 90 degrees, both with 24 microm pitch: a micrograting and a nanopattern of rows of 140- nm-diameter pits arranged in a rectangular array with 300 nm centre-to-centre spacing. The cell response to these textures was shown to be highly dependent on textural feature dimensions. We show that cells align to the stripes of nanopits. Stripes of 30-nm deep nanopits were also shown to elicit a stronger response from cells than 160-nm deep nanopits.


Subject(s)
Cell Culture Techniques/methods , Fibroblasts/cytology , Fibroblasts/physiology , Mechanotransduction, Cellular/physiology , Nanostructures/chemistry , Nanostructures/ultrastructure , Tissue Engineering/methods , Cell Adhesion , Cell Line , Cell Polarity , Crystallization/methods , Humans , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
4.
Nanomedicine (Lond) ; 1(3): 281-96, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17716159

ABSTRACT

This review discusses some of the most common polymer scaffold fabrication techniques used for tissue engineering applications. Although the field of scaffold fabrication is now well established and advancing at a fast rate, more progress remains to be made, especially in engineering small diameter blood vessels and providing scaffolds that can support deep tissue structures. With this in mind, we introduce two new lithographic methods that we expect to go some way to addressing this problem.


Subject(s)
Biocompatible Materials/chemistry , Blood Vessels/growth & development , Polymers/chemistry , Tissue Engineering/methods , Animals , Blood Vessels/chemistry , Humans , Models, Theoretical , Nanotechnology/methods , Tissue Engineering/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...