Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-485044

ABSTRACT

RNA interference is a natural antiviral mechanism that could be harnessed to combat SARS-CoV-2 infection by targeting and destroying the viral genome. We screened lipophilic small-interfering RNA (siRNA) conjugates targeting highly conserved regions of the SARS-CoV-2 genome and identified leads targeting outside of the spike-encoding region capable of achieving [≥]3-log viral reduction. Serial passaging studies demonstrated that a two-siRNA combination prevented development of resistance compared to a single-siRNA approach. A two-siRNA combination delivered intranasally protected Syrian hamsters from weight loss and lung pathology by viral infection upon prophylactic administration but not following onset of infection. Together, the data support potential utility of RNAi as a prophylactic approach to limit SARS-CoV-2 infection that may help combat emergent variants, complement existing interventions, or protect populations where vaccines are less effective. Most importantly, this strategy has implications for developing medicines that may be valuable in protecting against future coronavirus pandemics.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-434607

ABSTRACT

Sotrovimab (VIR-7831) and VIR-7832 are dual action monoclonal antibodies (mAbs) targeting the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sotrovimab and VIR-7832 were derived from a parent antibody (S309) isolated from memory B cells of a 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) survivor. Both mAbs contain an "LS" mutation in the Fc region to prolong serum half-life. In addition, VIR-7832 encodes an Fc GAALIE mutation that has been shown previously to evoke CD8+ T-cells in the context of an in vivo viral respiratory infection. Sotrovimab and VIR-7832 neutralize wild-type and variant pseudotyped viruses and authentic virus in vitro. In addition, they retain activity against monoclonal antibody resistance mutations conferring reduced susceptibility to previously authorized mAbs. The sotrovimab/VIR-7832 epitope continues to be highly conserved among circulating sequences consistent with the high barrier to resistance observed in vitro. Furthermore, both mAbs can recruit effector mechanisms in vitro that may contribute to clinical efficacy via elimination of infected host cells. In vitro studies with these mAbs demonstrated no enhancement of infection. In a Syrian Golden hamster proof-of concept wildtype SARS-CoV-2 infection model, animals treated with sotrovimab had less weight loss, and significantly decreased total viral load and infectious virus levels in the lung compared to a control mAb. Taken together, these data indicate that sotrovimab and VIR-7832 are key agents in the fight against COVID-19.

3.
Immune Network ; : e33-2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-717668

ABSTRACT

Interferon-gamma (IFNG) is a pleiotropic cytokine that modulates both innate and adaptive immune networks; it is the most potent activator of macrophages and a signature cytokine of activated T lymphocytes. Though IFNG is now appreciated to have a multitude of roles in immune modulation and broad-spectrum pathogen defense, it was originally discovered, and named, as a secretory factor that interferes with viral replication. In contrast to the prototypical type I interferons produced by any cells upon viral infection, only specific subsets of immune cells can produce IFNG upon infection or stimulation with antigen or mitogen. Still, virtually all cells can respond to both types of interferons. This makes IFNG a versatile anti-microbial cytokine and also gives it a unique position in the antiviral defense system. The goal of this review is to highlight the direct antiviral mechanisms of IFNG, thereby clarifying its antiviral function in the effective control of viral infections.


Subject(s)
Antiviral Agents , Defense Mechanisms , Interferon Type I , Interferon-gamma , Interferons , Macrophages , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...