Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(23): 234714, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31864256

ABSTRACT

The activity of Pt-Re surfaces was studied for the water-gas shift (WGS) reaction in order to understand how Pt-Re interactions and cluster-support interactions influence activity. The results from these studies were also compared with previous reports of WGS activity on Pt-Re clusters grown on TiO2. Platinum on Re surfaces were prepared by annealing Re films on Pt(111) to form Pt-Re surface alloys, depositing Pt on Re/Pt(111), and depositing Pt on Re clusters supported on highly oriented pyrolytic graphite (HOPG) surfaces. In all cases, the turnover frequency (TOF) for the WGS reaction was higher for Pt with subsurface Re compared to pure Pt. Furthermore, the TOF for 2 ML Pt/TiO2 clusters was greater than that of Pt(111) and 2 ML Pt/HOPG clusters, indicating that the TiO2 support enhances activity for the WGS reaction on Pt. For Pt/TiO2 clusters, a plot of the fraction of perimeter/surface sites as a function of Pt coverage closely follows TOF vs Pt coverage, strongly suggesting that activity occurs at the Pt-TiO2 interface. Notably, the fraction of undercoordinated sites as a function of Pt coverage does not follow the same behavior as the TOFs.

2.
Sci Technol Adv Mater ; 20(1): 379-387, 2019.
Article in English | MEDLINE | ID: mdl-31105802

ABSTRACT

We have studied P adsorption on Ni(111), a system which shows complex adsorbate structures. We determined the phase diagram of the surface P adsorbed on Ni(111). At low coverage, amorphous P was observed. At temperatures between 373 and 673 K and coverages above 0.1 monolayer, we found a 7 × 7   R 19.1 ∘ structure, but above 673 K, other complex structures were created. These structures seemed to correlate with each other and we reinterpret a 7 × 7   R 19.1 ∘ structure of P adsorbed on Ni(111) based on the similarities of these surface structures. The new rectangular structure for the 7 × 7   19.1 ∘ is discussed in relation to the Ni2P local structure.

3.
Phys Chem Chem Phys ; 17(42): 28354-63, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26018140

ABSTRACT

Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition.

SELECTION OF CITATIONS
SEARCH DETAIL
...