Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 22(1): 1-20, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27814599

ABSTRACT

Recent research on translation and protein synthesis in several pathologies, including cancer, peripheral artery disease, and wound healing, demonstrates the key role played by translational factors in tumorigenic and angiogenic processes. This review will focus on one specific translational factor, eIF3e also called INT6, the "e" subunit of the translation initiation factor eIF3. INT6/eIF3e has recently been described as a multifunction protein playing a role in translation, protein degradation, DNA repair, nonsense-mediated mRNA decay, cell cycle and control of cell response to low oxygen (hypoxia or ischemia) through modulation of the Hypoxia Inducible Factors (HIFs). Interestingly, INT6/eIF3e is a double-edged sword that has both oncogenic and tumor suppressive abilities. In addition to its role in tumorigenesis, its silencing has recently been suggested as a potential therapeutic strategy to improve cell survival and function after ischemic injuries. Although a deeper understanding of the molecular mechanisms involved in these pathophysiological functions is essential, particularly to transform the in vitro/in vivo findings into clinical applications, INT6/eIF3e modulation could provide therapeutic benefit for a variety of human diseases such as cancer or vascular diseases.


Subject(s)
Eukaryotic Initiation Factor-3/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Eukaryotic Initiation Factor-3/chemistry , Eukaryotic Initiation Factor-3/genetics , Genes, Tumor Suppressor , Humans , Neoplasms/blood supply , Neoplasms/genetics , Neoplasms/metabolism , Neovascularization, Pathologic , Neovascularization, Physiologic , Oncogenes , Protein Subunits
2.
Int J Mol Sci ; 15(2): 2172-90, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24481065

ABSTRACT

Glioblastomas (GBM) are very aggressive and malignant brain tumors, with frequent relapses despite an appropriate treatment combining surgery, chemotherapy and radiotherapy. In GBM, hypoxia is a characteristic feature and activation of Hypoxia Inducible Factors (HIF-1α and HIF-2α) has been associated with resistance to anti-cancer therapeutics. Int6, also named eIF3e, is the "e" subunit of the translation initiation factor eIF3, and was identified as novel regulator of HIF-2α. Eukaryotic initiation factors (eIFs) are key factors regulating total protein synthesis, which controls cell growth, size and proliferation. The functional significance of Int6 and the effect of Int6/EIF3E gene silencing on human brain GBM has not yet been described and its role on the HIFs is unknown in glioma cells. In the present study, we show that Int6/eIF3e suppression affects cell proliferation, cell cycle and apoptosis of various GBM cells. We highlight that Int6 inhibition induces a diminution of proliferation through cell cycle arrest and increased apoptosis. Surprisingly, these phenotypes are independent of global cell translation inhibition and are accompanied by decreased HIF expression when Int6 is silenced. In conclusion, we demonstrate here that Int6/eIF3e is essential for proliferation and survival of GBM cells, presumably through modulation of the HIFs.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/mortality , Eukaryotic Initiation Factor-3/genetics , Glioblastoma/genetics , Glioblastoma/mortality , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Models, Biological , RNA Interference
3.
Mol Pharmacol ; 69(3): 680-90, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16293711

ABSTRACT

Cholecystokinin receptor-2 (CCK2R) is a G protein receptor that regulates a number of physiological functions. Activation of CCK2R and/or expression of a constitutively active CCK2R variant may contribute to human diseases, including digestive cancers. Search for antagonists of the CCK2R has been an important challenge during the last few years, leading to discovery of a set of chemically distinct compounds. However, several early-discovered antagonists turned out to be partial agonists. In this context, we carried out pharmacological characterization of six CCK2R antagonists using COS-7 cells expressing the human CCK2R or a CCK2R mutant having a robust constitutive activity on inositol phosphates production, and we investigated the molecular mechanisms which, at a CCK2R binding site, account for these features. Results indicated that three compounds, 3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-N'-(3-methylphenyl)urea (L365,260), 4-{[2-[[3-(lH-indol-3-yl)-2-methyl-1-oxo-2-[[[1.7.7-trimethyl-bicyclo[2.2.1]hept-2-yl)-oxy]carbonyl]amino]propyl]amino]-1-phenylethyl]amino-4-oxo-[lS-la.2[S*(S*)]4a]}-butanoate N-methyl-D-glucamine (PD135,158), and (R)-1-naphthalenepropanoic acid, b-[2-[[2-(8-azaspiro-[4.5]dec-8-ylcarbonyl)-4,6-dimethylphenyl]amino]-2-oxoethyl] (CR2945), were partial agonists; one molecule, 1-[(R)-2,3-dihydro-1-(2,3-dihydro-1-(2-methylphenacyl)-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl]-3-(3-methylphenyl)urea (YM022), was a neutral antagonist; and two compounds, N-(+)-[1-(adamant-1-ylmethyl)-2,4-dioxo-5-phenyl2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-3-yl]-N'-phenylurea (GV150,013X) and ([(N-[methoxy-3 phenyl] N-[N-methyl N-phenyl carbamoylmethyl], carbomoyl-methyl)-3 ureido]-3-phenyl)2-propionic acid (RPR101,048), were inverse agonists. Furthermore, target- and pharmacophore-based docking of ligands followed by molecular dynamic simulation experiments resulted in consistent motion of aromatic residues belonging to a network presumably important for activation, thus providing the first structural explanations for the different pharmacological profiles of tested compounds. This study confirms that several referenced so-called antagonists are in fact partial agonists, and because of this undesired activity, we suggest that newly generated molecules should be preferred to efficiently block CCK2R-related physiological effects. Furthermore, data on the structural basis for the different pharmacological features of CCK2R ligands will serve to further clarify CCK2R mechanism of activation.


Subject(s)
Receptor, Cholecystokinin B/agonists , Receptor, Cholecystokinin B/antagonists & inhibitors , Animals , COS Cells , Chlorocebus aethiops , Humans , Inositol Phosphates/biosynthesis , Ligands , Mutation , Receptor, Cholecystokinin B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...