Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 328: 116978, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36521220

ABSTRACT

Growing industrialization and unchecked release of industrial waste, including heavy metals have resulted in disastrous effects on environment. Considering the problem of heavy metal pollution, the present research was designed to study the bioremediation of chromium, a highly toxic and prominent heavy metal pollutant by Acinetobacter junii strain b2w isolated from the Mithi river, Mumbai, India. The bacterial isolate could grow without affecting its growth kinetics up to a concentration of 200 ppm of chromium and showed resistance towards 400 ppm of chromium. It was able to bioremediate 83.06% of total chromium and reduces 98.24% of Cr6+ to C3+ at a concentration of 10 ppm of chromium. The bacterial isolate could grow well at a wide pH range from 5 to 9, salinity of up to 3.5% and could also tolerate heavy metals such as Cd, Zn, As, Hg, Pb and Cu. Thus, indicating its possible on-ground applicability for bioremediation of chromium. Acinetobacter junii bioaccumulate chromium without disrupting the cell integrity and biosorption. However, chromium alters the functional groups on bacterial cell surface and led to decrease in sulfate-containing molecules. Further, the protein expression study has revealed that Cr significantly up-regulates proteins broadly classified under envelope stress responses, oxidative stress responses, energy metabolism and quorum sensing and growth regulator. The possible mechanisms of Cr detoxification in Acinetobacter junii strain b2w could be reduction, bioaccumulation and efflux along with neutralization of oxidative stress generated by Cr. Thus, based on bacterial bioremediation potential and its molecular response, it can be proposed that the isolated Acinetobacter junii has potential applicability for chromium bioremediation.


Subject(s)
Chromium , Metals, Heavy , Biodegradation, Environmental , Proteomics , Metals, Heavy/analysis
2.
J Environ Manage ; 287: 112279, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33706095

ABSTRACT

Environment pollution is at its peak and is creating havoc for living beings. Industrial wastes containing toxic pollutants have contributed to a great extent in this disastrous environment pollution. Chromium (Cr3+/Cr6+) is highly toxic and one of the most common environmental pollutants because of its extensive use in industries especially tanneries. Lack of efficient treatment methods has resulted in extensive chromium pollution. Bioremediation of chromium using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. Bacteria possess numerous mechanisms such as biosorption, reduction, efflux or bioaccumulation, naturally or acquired to counter the toxicity of chromium. This review focuses on the bacterial responses against chromium toxicity and scope for their application in bioremediation. The differences and similarities between Gram negative and positive bacteria against chromium are also highlighted. Further, the knowledge gap and future prospects are also discussed in order to fill these gaps and overcome the problem associated with real-time applicability of bacterial bioremediation.


Subject(s)
Chromium , Environmental Pollutants , Bacteria/genetics , Biodegradation, Environmental , Chromium/analysis , Chromium/toxicity , Environmental Pollutants/analysis , Industrial Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...