Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 50(3): 356-67, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23603119

ABSTRACT

A high-throughput RNA interference (RNAi) screen targeting 542 genes of the human kinome was used to discover regulators of RNAi. Here we report that the proto-oncogene Akt-3/PKBγ (Akt3) phosphorylates Argonaute 2 (Ago2) at S387, which downregulates cleavage and upregulates translational repression of endogenous microRNA (miRNA)-targeted messenger RNAs (mRNAs). We further demonstrate that Akt3 coimmunoprecipitates with Ago2 and phosphorylation of Ago2 at S387 facilitates its interaction with GW182 and localization to cytoplasmic processing bodies (P bodies), where miRNA-targeted mRNAs are thought to be stored and degraded. Therefore, Akt3-mediated phosphorylation of Ago2 is a molecular switch between target mRNA cleavage and translational repression activities of Ago2.


Subject(s)
Argonaute Proteins/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/genetics , Argonaute Proteins/metabolism , Cell Line , Cell Line, Tumor , Down-Regulation , HEK293 Cells , HeLa Cells , Humans , Phosphorylation , Proto-Oncogene Mas , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation
2.
RNA ; 17(10): 1831-45, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21868483

ABSTRACT

The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Hepacivirus/genetics , Lipid Metabolism , MicroRNAs/genetics , RNA Interference , RNA, Viral/genetics , Argonaute Proteins , Cell Line , Eukaryotic Initiation Factor-2/genetics , Humans , Ribonuclease III/metabolism
3.
Inorg Chem ; 45(19): 7736-47, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-16961365

ABSTRACT

Electron paramagnetic resonance (EPR) spectra are presented for iron complexes of catecholate, tironate, and a 3,4-dihydroxyphenylalanine (DOPA)-containing peptide of sequence Ac-Ala-DOPA-Thr-Pro-CONH2 ("AdopaTP"). This peptide was prepared to model potential metal-protein cross-links in the adhesive used by marine mussels, Mytilus edulis, for affixing themselves to surfaces. Spectra are shown for iron bound to each ligand in mono, bis, and tris coordination environments. For example, the catecholate complexes {Fe(cat)}, {Fe(cat)2}, and [Fe(cat)3]3- are provided. Detailed simulations are presented to describe the origin of spectra for the iron-catecholate and iron-peptide species, which show that the spectral features can be accounted for only with the inclusion of D- and E-strain. The spectroscopy of each compound is shown under both anaerobic and aerobic conditions. When exposed to air, the high-spin Fe3+ signal of [Fe(AdopaTP)3]3- decreases and an organic radical is formed. No other sample exhibited an appreciable radical signal. These data are discussed in light of the biomaterial synthesis carried out by marine mussels.


Subject(s)
Catechols/chemistry , Cross-Linking Reagents/chemistry , Iron/chemistry , Peptides/chemistry , Adhesiveness , Computer Simulation , Electron Spin Resonance Spectroscopy , Molecular Structure , Oceans and Seas , Oxygen/chemistry
4.
Dalton Trans ; (6): 813-22, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16437176

ABSTRACT

A diverse array of biological systems incorporate 3,4-dihydroxyphenlyalanine (DOPA) into proteins and small molecules for cross-linking and material generation. Marine worm eggshells, sea squirt wound plugs, and marine mussel adhesives may all be formed by combining DOPA-containing molecules with high levels of metals. In order to provide model systems for characterizing these biomaterials, we carried out a study on metal binding to a DOPA-containing peptide. Ultraviolet-visible absorption spectra are presented for the AdopaTP peptide binding to Fe3+, V3+, VO2+, Mn3+, Ti4+, Cu2+, Co2+, and Ni2+ in mono, bis, and where applicable, tris coordination modes. Association constants were determined for selected metal ions binding to the peptide. In general, the spectroscopic and binding properties of this DOPA-containing peptide were found to be similar to those of catechol.


Subject(s)
Dihydroxyphenylalanine/chemistry , Metals/chemistry , Peptides/chemistry , Spectrophotometry/methods , Transition Elements/chemistry , Animals , Bivalvia/metabolism , Cobalt/chemistry , Egg Proteins/chemistry , Manganese/chemistry , Membrane Proteins/metabolism , Spectrophotometry, Ultraviolet , Titanium/chemistry , Vanadium/chemistry
5.
Dalton Trans ; (7): 1061-72, 2004 Apr 07.
Article in English | MEDLINE | ID: mdl-15252685

ABSTRACT

Interactions between metals and catechol (1,2-dihydroxybenzene) or other ortho-dihydroxy moieties are being found in an increasing number of biological systems with functions ranging from metal ion internalization to biomaterial synthesis. Although metal-catecholate interactions have been studied in the past, we present the first systematic study of an array of these compounds, all prepared under identical conditions. We report the ultraviolet-visible absorption (UV-vis) spectra for catecholate and tironate complexes of the first row transition elements. Generation and identification of these species were accomplished by preparing aqueous solutions with varied ligand:metal ratios and subsequently titrating with base (NaOH). Controlled ligand deprotonation and metal binding resulted in sequential formation of complexes with one, two, and sometimes three catecholate or tironate ligands bound to a metal ion. We prepared the mono-, bis- and tris-catecholates and -tironates of Fe(3+), V(3+), V(4+)and Mn(3+), the mono- and bis-catecholates and -tironates of Cu(2+), Co(2+), Ni(2+), Zn(2+), Cr(2+) and Mn(2+), and several Ti(4+) and Cr(3+) species. The UV-vis spectra of each complex are described, some of which have not been reported previously. These data can now be applied to characterization of biological metal-catecholate systems.


Subject(s)
Catechols/chemistry , Metals/chemistry , Hydrogen-Ion Concentration , Ligands , Solutions/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...