Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(11)2023 11 17.
Article in English | MEDLINE | ID: mdl-38002341

ABSTRACT

Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.


Subject(s)
COVID-19 , Frameshifting, Ribosomal , Humans , Phosphorothioate Oligonucleotides/pharmacology , SARS-CoV-2/metabolism , RNA, Viral/metabolism , Antiviral Agents/pharmacology , DNA/metabolism , Virus Replication , Nucleic Acid Conformation
2.
Genes (Basel) ; 14(5)2023 05 13.
Article in English | MEDLINE | ID: mdl-37239436

ABSTRACT

G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.


Subject(s)
G-Quadruplexes , Biomolecular Condensates , Cell Nucleus/genetics , RNA/genetics , Proteins
3.
Biochimie ; 204: 8-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36063975

ABSTRACT

G-quadruplexes (G4s) are gaining increasing attention as possible regulators of chromatin packaging, and robust approaches to their studies in pseudo-native context are much needed. Here, we designed a simple in vitro model of G4-prone genomic DNA and employed it to elucidate the impact of G4s and G4-stabilizing ligands on nucleosome occupancy. We obtained two 226-bp dsDNA constructs composed of the strong nucleosome positioning sequence and an internucleosomal DNA-imitating tail. The tail was G4-free in the control construct and harbored a "strong" (stable) G4 motif in the construct of interest. An additional "weak" (semi-stable) G4 motif was found within the canonical nucleosome positioning sequence. Both G4s were confirmed by optical methods and 1H NMR spectroscopy. Electrophoretic mobility assays showed that the weak G4 motif did not obstruct nucleosome assembly, while the strong G4 motif in the tail sequence diminished nucleosome yield. Atomic force microscopy data and molecular modeling confirmed that the strong G4 was maintained in the tail of the correctly assembled nucleosome structure. Using both in vitro and in silico models, we probed three known G4 ligands and detected nucleosome-disrupting effects of the least selective ligand. Our results are in line with the negative correlation between stable G4s and nucleosome density, support G4 tolerance between regularly positioned nucleosomes, and highlight the importance of considering chromatin context when targeting genomic G4s.


Subject(s)
Chromatin , G-Quadruplexes , Chromatin/genetics , Nucleosomes , Ligands , DNA/chemistry
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209337

ABSTRACT

G-quadruplex (G4) sites in the human genome frequently colocalize with CCCTC-binding factor (CTCF)-bound sites in CpG islands (CGIs). We aimed to clarify the role of G4s in CTCF positioning. Molecular modeling data suggested direct interactions, so we performed in vitro binding assays with quadruplex-forming sequences from CGIs in the human genome. G4s bound CTCF with Kd values similar to that of the control duplex, while respective i-motifs exhibited no affinity for CTCF. Using ChIP-qPCR assays, we showed that G4-stabilizing ligands enhance CTCF occupancy at a G4-prone site in STAT3 gene. In view of the reportedly increased CTCF affinity for hypomethylated DNA, we next questioned whether G4s also facilitate CTCF recruitment to CGIs via protecting CpG sites from methylation. Bioinformatics analysis of previously published data argued against such a possibility. Finally, we questioned whether G4s facilitate CTCF recruitment by affecting chromatin structure. We showed that three architectural chromatin proteins of the high mobility group colocalize with G4s in the genome and recognize parallel-stranded or mixed-topology G4s in vitro. One of such proteins, HMGN3, contributes to the association between G4s and CTCF according to our bioinformatics analysis. These findings support both direct and indirect roles of G4s in CTCF recruitment.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , CpG Islands , DNA Methylation , G-Quadruplexes , Genome, Human , CCCTC-Binding Factor/genetics , Chromatin/genetics , Humans , K562 Cells
5.
Biosens Bioelectron ; 175: 112864, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33309217

ABSTRACT

We report the design of robust sensors for measuring intracellular pH, based on the native DNA i-motifs (iMs) found in neurodegeneration- or carcinogenesis-related genes. Those iMs appear to be genomic regulatory elements and might modulate transcription in response to pH stimuli. Given their intrinsic sensitivity to minor pH changes within the physiological range, such noncanonical DNA structures can be used as sensor core elements without additional modules other than fluorescent labels or quenchers. We focused on several iMs that exhibited fast folding/unfolding kinetics. Using stopped-flow techniques and FRET-melting/annealing assays, we confirmed that the rates of temperature-driven iM-ssDNA transitions correlate with the rates of the pH-driven transitions. Thus, we propose FRET-based hysteresis analysis as an express method for selecting sensors with desired kinetic characteristics. For the leading fast-response sensor, we optimized the labelling scheme and performed intracellular calibration. Unlike the commonly used small-molecule pH indicators, that sensor was transferred efficiently to cell nuclei. Considering its favourable kinetic characteristics, the sensor can be used for monitoring proton dynamics in the nucleus. These results argue that the 'genome-inspired' design is a productive approach to the development of biocompatible molecular tools.


Subject(s)
Biosensing Techniques , DNA/genetics , Genomics , Hydrogen-Ion Concentration , Kinetics , Nucleotide Motifs , Thermodynamics
6.
Org Biomol Chem ; 18(31): 6147-6154, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32719836

ABSTRACT

G-quadruplexes (G4) represent one class of non-canonical secondary nucleic acid structures that are currently regarded as promising and attractive targets for anti-cancer, anti-viral and antibacterial therapy. Herein, we probe a new i-clamp-inspired phenoxazine scaffold for designing G4-stabilizing ligands. The length of the protonated aminoalkyl tethers ('arms') of the phenoxazine-based ligand was optimized in silico. Two double-armed ligands differing in the relative orientation of their arms and one single-armed ligand were synthesized. The two-armed ligands significantly enhanced the thermal stability of the G-quadruplex structures (increasing the melting temperature by up to 20 °C) and displayed G4 selectivity over duplex DNA. The ligands look promising for biological studies and the phenoxazine scaffold could be a starting point for designing new G4-interacting compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...