Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 148(1): 62-73, 2013 May.
Article in English | MEDLINE | ID: mdl-22989317

ABSTRACT

A key strategy in soybean drought research is increased stomatal sensitivity to high vapor pressure deficit (VPD), which contributes to the 'slow wilting' trait observed in the field. These experiments examined whether temperature of the growth environment affected the ability of plants to respond to VPD, and thus control transpiration rate (TR). Two soybean [Glycine max (L.) Merr.] and four wild soybean [Glycine soja (Sieb. and Zucc.)] genotypes were studied. The TR was measured over a range of VPD when plants were growing at 25 or 30°C, and again after an abrupt increase of 5°C. In G. max, a restriction of TR became evident as VPD increased above 2.0 kPa when temperature was near its growth optimum of 30°C. 'Slow wilting' genotype plant introduction (PI) 416937 exhibited greater TR control at high VPD compared with Hutcheson, and only PI 416937 restrained TR after the shift to 35°C. Three of the four G. soja genotypes exhibited control over TR with increasing VPD when grown at 25°C, which is near their estimated growth optimum. The TR control became engaged at lower VPD than in G. max and was retained to differing degrees after a shift to 30°C. The TR control systems in G. max and G. soja clearly were temperature-sensitive and kinetically definable, and more restrictive in the 'slow wilting' soybean genotype. For the favorable TR control traits observed in G. soja to be useful for soybean breeding in warmer climates, the regulatory linkage with lower temperatures must be uncoupled.


Subject(s)
Glycine max/physiology , Plant Transpiration , Vapor Pressure , Genotype , Plant Transpiration/genetics , Glycine max/genetics , Temperature
2.
Funct Plant Biol ; 39(12): 979-986, 2012 Dec.
Article in English | MEDLINE | ID: mdl-32480847

ABSTRACT

Water availability for turfgrass systems is often limited and is likely to become more so in the future. Here, we conducted experiments that examined the ability of tall fescue (Festuca arundinacea Schreb.) to control transpiration with increasing vapour pressure deficit (VPD) and determined whether control was influenced by temperature. The first study was under steady-state conditions at two temperatures (21 and 27°C) and two VPDs (1.2 and 1.8kPa). At the lower temperature, water use was similar at both VPDs, indicating a restriction of transpiration at high VPD. At 27°C, transpiration control at high VPD was weakened and root growth also declined; both responses increase susceptibility to water-deficit stress. Another series of experiments was used to examine the physiological stability of the transpiration control. Temperature and VPD were adjusted in a stepwise manner and transpiration measured across a range of VPD in the days following environmental shifts. Results indicated that VPD control acclimated to the growth environment, with adjustment to drier conditions becoming evident after ~1 week. Control was again more effective at cool than at hot temperatures. Collectively, the results indicate that transpiration control by this cool season grass is most effective in the temperature range where it is best adapted.

3.
Theor Appl Genet ; 117(2): 143-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18392801

ABSTRACT

The seven-leaflet character of soybean [Glycine max L. (Merr.)] is a single recessive trait conditioned by the lf ( 2 ) gene. The lf ( 2 ) gene is located on linkage group (LG) 16 of the classical soybean genetic map, but it has not been placed on the molecular map. The objective of this research was to identify the location of the lf ( 2 ) gene on the soybean molecular map using simple sequence repeat (SSR) markers. A backcross breeding method was used to create three- and seven-leaflet near-isogenic lines in genetic backgrounds of 'Traill', 'MN1401', and 'MN1801'. Eight mapping populations were derived from eight single heterozygous Lf ( 2 ) lf ( 2 ) plants. A total of 482 SSR markers that covered approximately every 10-20 cM of all soybean molecular LG were used to screen the mapping populations for polymorphisms. For the 115 SSRs that were identified as polymorphic, possible linkage between the lf ( 2 ) gene and the polymorphic SSR markers was determined. One SSR marker from the LG B1, Sat_272, was linked (LOD > 4.0) to the lf ( 2 ) gene in the Traill and MN1401 derived populations, with map distances ranging from 2.8 to 11.2 cM. Two additional markers (a SSR, Sat_270 and a SNP, A588c) located on LG B1 were also polymorphic and were identified as linked to the lf ( 2 ) gene in one of the populations. This research was successful in mapping the lf ( 2 ) gene to LG B1 of the soybean molecular map and therefore, provides evidence that molecular LG B1 corresponds to classical LG 16.


Subject(s)
Chromosome Mapping , Genes, Plant , Genetic Linkage , Glycine max/genetics , Genes, Dominant , Genes, Recessive , Heterozygote , Homozygote , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...