Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 5541, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944339

ABSTRACT

Glacier flow instabilities can rapidly increase sea level through enhanced ice discharge. Surge-type glacier accelerations often occur with a decadal to centennial cyclicity suggesting internal mechanisms responsible. Recently, many surging tidewater glaciers around the Arctic Barents Sea region question whether external forces such as climate can trigger dynamic instabilities. Here, we identify a mechanism in which climate change can instigate surges of Arctic tidewater glaciers. Using satellite and seismic remote sensing observations combined with three-dimensional thermo-mechanical modeling of the January 2009 collapse of the Nathorst Glacier System (NGS) in Svalbard, we show that an underlying condition for instability was basal freezing and associated friction increase under the glacier tongue. In contrast, continued basal sliding further upstream increased driving stresses until eventual and sudden till failure under the tongue. The instability propagated rapidly up-glacier, mobilizing the entire 450 km2 glacier basin over a few days as the till entered an unstable friction regime. Enhanced mass loss during and after the collapse (5-7 fold compared to pre-collapse mass losses) combined with regionally rising equilibrium line altitudes strongly limit mass replenishment of the glacier, suggesting irreversible consequences. Climate plays a paradoxical role as cold glacier thinning and retreat promote basal freezing which increases friction at the tongue by stabilizing an efficient basal drainage system. However, with some of the most intense atmospheric warming on Earth occurring in the Arctic, increased melt water can reduce till strength under tidewater glacier tongues to orchestrate a temporal clustering of surges at decadal timescales, such as those observed in Svalbard at the end of the Little Ice Age. Consequently, basal terminus freezing promotes a dynamic vulnerability to climate change that may be present in many Arctic tidewater glaciers.

2.
Nat Commun ; 7: 11897, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27283778

ABSTRACT

Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m(-3) denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.

SELECTION OF CITATIONS
SEARCH DETAIL
...