Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e30469, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737237

ABSTRACT

Working in a stem cell laboratory necessitates a thorough understanding of complex cell culture protocols, the operation of sensitive scientific equipment, adherence to safety standards, and general laboratory etiquette. For novice student researchers, acquiring the necessary specialized knowledge before their initial laboratory experience can be a formidable task. Similarly, for experienced laboratory personnel, efficiently and uniformly training new trainees to a rigorous standard presents a significant challenge. In response to these issues, we have developed an educational and interactive virtual cell culture environment. This interactive virtual lab aims to equip students with foundational knowledge in maintaining cortical brain organoids and to instill an understanding of pertinent safety procedures and laboratory etiquette. The gamification of this training process seeks to provide laboratory supervisors in highly specialized fields with an effective tool to integrate students into their work environments more rapidly and safely.

2.
bioRxiv ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38559212

ABSTRACT

The analysis of tissue cultures, particularly brain organoids, takes a high degree of coordination, measurement, and monitoring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Unified by an Internet of Things (IoT) architecture, our approach enables continuous, communicative interactions among various sensing and actuation devices, achieving precisely timed control of in vitro biological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids and monitor their neuronal activity. The organoids are cultured in custom, 3D-printed chambers attached to commercial microelectrode arrays for electrophysiology monitoring. Periodic feeding is achieved using programmable microfluidic pumps. We developed computer vision fluid volume estimations of aspirated media, achieving high accuracy, and used feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a 7-day study of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated experimental samples maintained robust neural activity throughout the experiment, comparable with the control samples. The automated system enabled hourly electrophysiology recordings that revealed dramatic temporal changes in neuron firing rates not observed in once-a-day recordings.

3.
eNeuro ; 10(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38016807

ABSTRACT

The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.


Subject(s)
Cell Culture Techniques , Pluripotent Stem Cells , Humans , Organoids , Neurons
4.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37503236

ABSTRACT

The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.

5.
Article in English | MEDLINE | ID: mdl-37383277

ABSTRACT

The Internet of Things (IoT) provides a simple framework to control online devices easily. IoT is now a commonplace tool used by technology companies but is rarely used in biology experiments. IoT can benefit cloud biology research through alarm notifications, automation, and the real-time monitoring of experiments. We developed an IoT architecture to control biological devices and implemented it in lab experiments. Lab devices for electrophysiology, microscopy, and microfluidics were created from the ground up to be part of a unified IoT architecture. The system allows each device to be monitored and controlled from an online web tool. We present our IoT architecture so other labs can replicate it for their own experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...