Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 88(3): 1137-1145, 2022.
Article in English | MEDLINE | ID: mdl-35754278

ABSTRACT

BACKGROUND: Neurodegenerative diseases are widespread yet challenging to diagnose and stage antemortem. As an extension of the central nervous system, the eye harbors retina ganglion cells vulnerable to degeneration, and visual symptoms are often an early manifestation of neurodegenerative disease. OBJECTIVE: Here we test whether prion protein aggregates could be detected in the eyes of live mice using an amyloid-binding fluorescent probe and high-resolution retinal microscopy. METHODS: We performed retinal imaging on an experimental mouse model of prion-associated cerebral amyloid angiopathy in a longitudinal study. An amyloid-binding fluorophore was intravenously administered, and retinal imaging was performed at timepoints corresponding to early, mid-, and terminal prion disease. Retinal amyloid deposits were quantified and compared to the amyloid load in the brain. RESULTS: We report that by early prion disease (50% timepoint), discrete fluorescent foci appeared adjacent to the optic disc. By later timepoints, the fluorescent foci surrounded the optic disc and tracked along retinal vasculature. CONCLUSION: The progression of perivascular amyloid can be directly monitored in the eye by live imaging, illustrating the utility of this technology for diagnosing and monitoring the progression of cerebral amyloid angiopathy.


Subject(s)
Alzheimer Disease , Amyloidosis , Cerebral Amyloid Angiopathy , Neurodegenerative Diseases , Prion Diseases , Prions , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Animals , Cerebral Amyloid Angiopathy/metabolism , Longitudinal Studies , Mice , Prion Diseases/diagnostic imaging , Prion Diseases/metabolism , Prions/metabolism , Retina/diagnostic imaging , Retina/metabolism
2.
Neurobiol Dis ; 142: 104955, 2020 08.
Article in English | MEDLINE | ID: mdl-32454127

ABSTRACT

Many aggregation-prone proteins linked to neurodegenerative disease are post-translationally modified during their biogenesis. In vivo pathogenesis studies have suggested that the presence of post-translational modifications can shift the aggregate assembly pathway and profoundly alter the disease phenotype. In prion disease, the N-linked glycans and GPI-anchor on the prion protein (PrP) impair fibril assembly. However, the relevance of the two glycans to aggregate structure and disease progression remains unclear. Here we show that prion-infected knockin mice expressing an additional PrP glycan (tri-glycosylated PrP) develop new plaque-like deposits on neuronal cell membranes, along the subarachnoid space, and periventricularly, suggestive of high prion mobility and transit through the interstitial fluid. These plaque-like deposits were largely non-congophilic and composed of full length, uncleaved PrP, indicating retention of the glycophosphatidylinositol (GPI) anchor. Prion aggregates sedimented in low density fractions following ultracentrifugation, consistent with oligomers, and bound low levels of heparan sulfate (HS) similar to other predominantly GPI-anchored prions. Collectively, these results suggest that highly glycosylated PrP primarily converts as a GPI-anchored glycoform, with low involvement of HS co-factors, limiting PrP assembly mainly to oligomers. Since PrPC is highly glycosylated, these findings may explain the high frequency of diffuse, synaptic, and plaque-like deposits in the brain as well as the rapid conversion commonly observed in human and animal prion disease.


Subject(s)
Heparitin Sulfate/metabolism , Prion Diseases/metabolism , Prion Proteins/metabolism , Protein Aggregates/genetics , Protein Processing, Post-Translational/genetics , Animals , Brain/metabolism , Cell Membrane/metabolism , Female , Male , Mice , Mice, Transgenic , Prion Diseases/genetics , Prion Proteins/genetics , Protein Binding/genetics
3.
J Clin Invest ; 130(3): 1350-1362, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31985492

ABSTRACT

Posttranslational modifications (PTMs) are common among proteins that aggregate in neurodegenerative disease, yet how PTMs impact the aggregate conformation and disease progression remains unclear. By engineering knockin mice expressing prion protein (PrP) lacking 2 N-linked glycans (Prnp180Q/196Q), we provide evidence that glycans reduce spongiform degeneration and hinder plaque formation in prion disease. Prnp180Q/196Q mice challenged with 2 subfibrillar, non-plaque-forming prion strains instead developed plaques highly enriched in ADAM10-cleaved PrP and heparan sulfate (HS). Intriguingly, a third strain composed of intact, glycophosphatidylinositol-anchored (GPI-anchored) PrP was relatively unchanged, forming diffuse, HS-deficient deposits in both the Prnp180Q/196Q and WT mice, underscoring the pivotal role of the GPI-anchor in driving the aggregate conformation and disease phenotype. Finally, knockin mice expressing triglycosylated PrP (Prnp187N) challenged with a plaque-forming prion strain showed a phenotype reversal, with a striking disease acceleration and switch from plaques to predominantly diffuse, subfibrillar deposits. Our findings suggest that the dominance of subfibrillar aggregates in prion disease is due to the replication of GPI-anchored prions, with fibrillar plaques forming from poorly glycosylated, GPI-anchorless prions that interact with extracellular HS. These studies provide insight into how PTMs impact PrP interactions with polyanionic cofactors, and highlight PTMs as a major force driving the prion disease phenotype.


Subject(s)
Mutation, Missense , Oligosaccharides/metabolism , Prion Diseases/metabolism , Prion Proteins/metabolism , Protein Aggregation, Pathological/metabolism , Protein Processing, Post-Translational , Amino Acid Substitution , Animals , Mice , Mice, Transgenic , Oligosaccharides/genetics , Prion Diseases/genetics , Prion Diseases/pathology , Prion Proteins/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology
4.
Acta Neuropathol ; 139(3): 527-546, 2020 03.
Article in English | MEDLINE | ID: mdl-31673874

ABSTRACT

Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.


Subject(s)
ADAM10 Protein/metabolism , Heparitin Sulfate/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/metabolism , Animals , Brain/metabolism , Brain/pathology , Humans , Mice
5.
PLoS Pathog ; 15(7): e1007864, 2019 07.
Article in English | MEDLINE | ID: mdl-31295325

ABSTRACT

Prions are unusual protein assemblies that propagate their conformationally-encoded information in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggregates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Register-ß-Sheet (PIRIBS) [2] or ß-solenoid conformations [3]. Similar folding models have also been proposed for PrPSc, although none of these have been confirmed experimentally. Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evidence that PrPSc is structured as a 4-rung ß-solenoid (4RßS) [4, 5]. Here, we combined different experimental data and computational techniques to build the first physically-plausible, atomic resolution model of mouse PrPSc, based on the 4RßS architecture. The stability of this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to be comparable to that of the prion forming domain of Het-s, a naturally-occurring ß-solenoid. Importantly, the 4RßS arrangement allowed the first simulation of the sequence of events underlying PrPC conversion into PrPSc. This study provides the most updated, experimentally-driven and physically-coherent model of PrPSc, together with an unprecedented reconstruction of the mechanism underlying the self-catalytic propagation of prions.


Subject(s)
PrPSc Proteins/chemistry , PrPSc Proteins/pathogenicity , Prions/chemistry , Prions/pathogenicity , Animals , Cryoelectron Microscopy , Mice , Models, Molecular , Molecular Dynamics Simulation , PrPC Proteins , PrPSc Proteins/ultrastructure , Prions/ultrastructure , Protein Conformation , Protein Structure, Quaternary
6.
Prion ; 13(1): 46-52, 2019 01.
Article in English | MEDLINE | ID: mdl-30646817

ABSTRACT

Understanding the structure of PrPSc is without doubt a sine qua non to understand not only PrPSc propagation, but also critical features of that process such as the strain phenomenon and transmission barriers. While elucidation of the PrPSc structure has been full of difficulties, we now have a large amount of structural information that allows us to begin to understand it. This commentary article summarizes a round table that took place within the Prion 2018 meeting held in Santiago de Compostela to discuss the state of the art in this matter. Two alternative models of PrPSc exist: the PIRIBS and the 4-rung ß-solenoid models. Both of them have relevant features. The 4-rung ß-solenoid model agrees with experimental constraints of brain derived PrPSc obtained from cryo-EM and X-ray fiber diffraction studies. Furthermore, it allows facile accommodation of the bulky glycans that decorate brain-derived PrPSc. On the other hand, the infectious PrP23-144 amyloid exhibits a PIRIBS architecture. Perhaps, both types of structure co-exist.


Subject(s)
PrPSc Proteins/metabolism , Amyloid/metabolism , Animals , Glycosylation , Humans , Mice , Models, Biological , Models, Molecular , PrPSc Proteins/chemistry
7.
Brain Pathol ; 28(6): 999-1011, 2018 11.
Article in English | MEDLINE | ID: mdl-29505163

ABSTRACT

Prions typically spread into the central nervous system (CNS), likely via peripheral nerves. Yet prion conformers differ in their capacity to penetrate the CNS; certain fibrillar prions replicate persistently in lymphoid tissues with no CNS entry, leading to chronic silent carriers. Subclinical carriers of variant Creutzfeldt-Jakob (vCJD) prions in the United Kingdom have been estimated at 1:2000, and vCJD prions have been transmitted through blood transfusion, however, the circulating prion conformers that neuroinvade remain unclear. Here we investigate how prion conformation impacts brain entry of transfused prions by challenging mice intravenously to subfibrillar and fibrillar strains. We show that most strains infiltrated the brain and caused terminal disease, however, the fibrillar prions showed reduced CNS entry in a strain-dependent manner. Strikingly, the highly fibrillar mCWD prion strain replicated in the spleen and emerged in the brain as a novel strain, indicating that a new neuroinvasive prion had been generated from a previously non-neuroinvasive strain. The new strain showed altered plaque morphology, brain regions targeted and biochemical properties and these properties were maintained upon intracerebral passage. Intracerebral passage of prion-infected spleen re-created the new strain. Splenic prions resembled the new strain biochemically and intracerebral passage of prion-infected spleen re-created the new strain, collectively suggesting splenic prion replication as a potential source. Taken together, these results indicate that intravenous exposure to prion-contaminated blood or blood products may generate novel neuroinvasive prion conformers and disease phenotypes, potentially arising from prion replication in non-neural tissues or from conformer selection.


Subject(s)
Blood Transfusion , Prion Diseases/transmission , Prions/chemistry , Prions/metabolism , Transfusion Reaction/etiology , Animals , Brain/metabolism , Brain/pathology , Creutzfeldt-Jakob Syndrome/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mutation , Prions/blood , Protein Conformation , Spleen/metabolism , Spleen/pathology , Wasting Disease, Chronic/etiology
8.
PLoS Pathog ; 14(1): e1006797, 2018 01.
Article in English | MEDLINE | ID: mdl-29385212

ABSTRACT

Very solid evidence suggests that the core of full length PrPSc is a 4-rung ß-solenoid, and that individual PrPSc subunits stack to form amyloid fibers. We recently used limited proteolysis to map the ß-strands and connecting loops that make up the PrPSc solenoid. Using high resolution SDS-PAGE followed by epitope analysis, and mass spectrometry, we identified positions ~116/118, 133-134, 141, 152-153, 162, 169 and 179 (murine numbering) as Proteinase K (PK) cleavage sites in PrPSc. Such sites likely define loops and/or borders of ß-strands, helping us to predict the threading of the ß-solenoid. We have now extended this approach to recombinant PrPSc (recPrPSc). The term recPrPSc refers to bona fide recombinant prions prepared by PMCA, exhibiting infectivity with attack rates of ~100%. Limited proteolysis of mouse and bank vole recPrPSc species yielded N-terminally truncated PK-resistant fragments similar to those seen in brain-derived PrPSc, albeit with varying relative yields. Along with these fragments, doubly N- and C-terminally truncated fragments, in particular ~89/97-152, were detected in some recPrPSc preparations; similar fragments are characteristic of atypical strains of brain-derived PrPSc. Our results suggest a shared architecture of recPrPSc and brain PrPSc prions. The observed differences, in particular the distinct yields of specific PK-resistant fragments, are likely due to differences in threading which result in the specific biochemical characteristics of recPrPSc. Furthermore, recombinant PrPSc offers exciting opportunities for structural studies unachievable with brain-derived PrPSc.


Subject(s)
Brain/metabolism , PrPSc Proteins/chemistry , Prions/chemistry , Proteolysis , Recombinant Proteins/chemistry , Animals , Arvicolinae , Female , Mice , Mice, Transgenic , PrPSc Proteins/metabolism , Prions/metabolism , Protein Structure, Secondary
9.
Sci Rep ; 7(1): 9584, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851967

ABSTRACT

Human transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders that include Kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia. GSS is a genetically determined TSE caused by a range of mutations within the prion protein (PrP) gene. Several animal models, based on the expression of PrPs carrying mutations analogous to human heritable prion diseases, support that mutations might predispose PrP to spontaneously misfold. An adapted Protein Misfolding Cyclic Amplification methodology based on the use of human recombinant PrP (recPMCA) generated different self-propagating misfolded proteins spontaneously. These were characterized biochemically and structurally, and the one partially sharing some of the GSS PrPSc molecular features was inoculated into different animal models showing high infectivity. This constitutes an infectious recombinant prion which could be an invaluable model for understanding GSS. Moreover, this study proves the possibility to generate recombinant versions of other human prion diseases that could provide a further understanding on the molecular features of these devastating disorders.


Subject(s)
Gerstmann-Straussler-Scheinker Disease/etiology , Prion Proteins/genetics , Recombination, Genetic , Amino Acid Substitution , Animals , Disease Models, Animal , Evolution, Molecular , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Humans , Mice , Mice, Transgenic , Mutation , Prion Proteins/chemistry , Prion Proteins/metabolism , Protein Aggregates , Protein Aggregation, Pathological , Protein Conformation , Protein Folding , Selection, Genetic
10.
Mol Neurobiol ; 54(8): 6412-6425, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27726110

ABSTRACT

Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer's disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Creutzfeldt-Jakob Syndrome/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Prion Diseases/metabolism , Serine Endopeptidases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Animals , Brain/metabolism , Creutzfeldt-Jakob Syndrome/genetics , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phosphorylation , Prion Diseases/genetics , Reelin Protein
11.
PLoS Pathog ; 12(9): e1005835, 2016 09.
Article in English | MEDLINE | ID: mdl-27606840

ABSTRACT

The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung ß-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.


Subject(s)
Amyloid/ultrastructure , PrPC Proteins/ultrastructure , PrPSc Proteins/ultrastructure , Amyloid/genetics , Animals , Cattle , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Cryoelectron Microscopy , Encephalopathy, Bovine Spongiform/genetics , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/pathology , Humans , PrPC Proteins/genetics , PrPSc Proteins/genetics
12.
Carbohydr Res ; 350: 98-102, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22269980

ABSTRACT

An O-polysaccharide was isolated by mild acid degradation at pH 4.5 of the long-chain lipopolysaccharide of Yersinia pseudotuberculosis PB1 (serotype O:1a) and studied using 2D NMR spectroscopy. It was found to contain two uncommon monosaccharides: paratose (3,6-dideoxy-d-ribo-hexose, Par) in the furanose form and 6-deoxy-d-manno-heptose (d-6dmanHep). The following structure of a branched tetrasaccharide repeat (O-unit) with a disaccharide side chain was established: This structure is at variance with the O-polysaccharide structure of Y. pseudotuberculosis O:1a reported earlier (Komandrova, N. A.; Gorshkova, R. P.; Isakov, V. V.; Ovodov, Y. S. Bioorg. Khim.1984, 10, 232-237). A comparative study by high-resolution ESI MS of the short-chain lipopolysaccharides from strain PB1 and a wbyM mutant thereof confirmed the function of wbyM as the paratosyltransferase gene.


Subject(s)
O Antigens/chemistry , O Antigens/metabolism , Transferases/metabolism , Yersinia pseudotuberculosis/enzymology , Carbohydrate Sequence , Molecular Sequence Data , Transferases/genetics , Yersinia pseudotuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...