Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19535, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376375

ABSTRACT

Simulating the response of a radiation detector is a modelling challenge due to the stochastic nature of radiation, often complex geometries, and multi-stage signal processing. While sophisticated tools for Monte Carlo simulation have been developed for radiation transport, emulating signal processing and data loss must be accomplished using a simplified model of the electronics called the digitizer. Due to a large number of free parameters, calibrating a digitizer quickly becomes an optimisation problem. To address this, we propose a novel technique by which evolutionary algorithms calibrate a digitizer autonomously. We demonstrate this by calibrating six free parameters in a digitizer model for the ADAC Forte. The accuracy of solutions is quantified via a cost function measuring the absolute percent difference between simulated and experimental coincidence count rates across a robust characterisation data set, including three detector configurations and a range of source activities. Ultimately, this calibration produces a count rate response with 5.8% mean difference to the experiment, improving from 18.3% difference when manually calibrated. Using evolutionary algorithms for model calibration is a notable advancement because this method is novel, autonomous, fault-tolerant, and achieved through a direct comparison of simulation to reality. The software used in this work has been made freely available through a GitHub repository.


Subject(s)
Algorithms , Software , Monte Carlo Method , Calibration , Computer Simulation
2.
Adv Colloid Interface Sci ; 227: 53-62, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26684365

ABSTRACT

We discuss progress in obtaining explicit equations for the capillary force between nano and micron sized solid spheres. Early approaches to this two-century old problem adopted approximations to the geometry. With the toroidal approximation, the meridian profile is approximated by an arc, and the approach leads to the capillary force being dependent on the location at which the force is evaluated. The Derjaguin approximation further assumes that the meridian radius is orders of magnitude smaller than the azimuth radius. An explicit expression for the capillary force is obtained, but the equation is limited to sufficiently small liquid volumes and separation distances. Significant progress has been made in recent years in using numerical solutions to derive analytical expressions for capillary bridges. Early numerical investigation established that the maximum separation for stable capillary bridges before rupture scales to the cubic root of the liquid volume. We report new progress in using numerical solutions to obtain more accurate and more general closed-form expressions for capillary bridges. Simple explicit algebraic equations have been observed to fit the numerical results well, leading to a closed-form solution applicable to capillary bridges between equal and unequal spheres and with zero or finite solid-liquid contact angles. The newly derived closed-form equation is more accurate and reduces to the Derjaguin equation when the liquid volume (or half-filling angle) and separation distance are both sufficiently small.

3.
Eur J Pharm Biopharm ; 72(1): 173-82, 2009 May.
Article in English | MEDLINE | ID: mdl-19130881

ABSTRACT

Roller compaction is one stage in a dry granulation process to produce free flowing granules. Its proper understanding is essential in optimising manufacturing efficiency and product quality. Roller compaction produces a compacted strip or "ribbon", which is then milled to produce granules. For a given milling condition, the density distribution in the ribbons determines the properties of the granules (particularly their size distribution and strength). Therefore, knowing the density distributions in the ribbons is very important in improving the effectiveness of the roller compaction process and the quality of the granules produced. In this paper, the density distribution in roller-compacted ribbons of microcrystalline cellulose (Avicel PH102) has been examined using three different techniques: (1) sectioning; (2) micro-indentation and (3) X-ray micro-computed tomography. It has been shown that with proper calibration all three techniques can essentially produce the same results, but with a different degree of resolution (scale of scrutiny). In addition, the influence of process conditions, such as roll gap, roll speed and the presence or absence of lubrication, on the ribbon density distributions has also been investigated. Flow into the press is often constrained by the presence of "cheek plates", which prevent lateral powder movement. In this type of arrangement, it is found that non-uniform powder feeding occurs in the compaction region, induced by the friction between the powder and the cheek plates; as a result, the densities in the middle of the ribbon width are generally higher than those close to the edges. It has also been shown that higher average ribbon densities are obtained when the roll gap, roll speed, or the friction between the powder and the side cheek plates is reduced.


Subject(s)
Chemistry, Pharmaceutical/methods , X-Ray Microtomography/methods , Cellulose/chemistry , Compressive Strength , Drug Compounding , Equipment Design , Particle Size , Porosity , Powders , Solubility , Surface Properties , Technology, Pharmaceutical/methods , Tensile Strength
4.
Nucl Med Biol ; 33(7): 939-44, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17045175

ABSTRACT

Separation of copper radioisotopes from a nickel target is normally performed using solvent extraction or anion exchange rather than using cationic exchange. A commonly held opinion is that cationic exchangers have very similar thermodynamic complexation constants for metallic ions with identical charges, therefore making the separation very difficult or impossible. The results presented in this article indicate that the selectivity of Chelex-100 (a cationic ion exchanger) for Cu radioisotope and Ni ions not only depends on the thermodynamic complexation constant in the resin but also markedly varies with the concentration of mobile H+. In our developed method, separation of copper radioisotopes from a nickel target was fulfilled in a column filled with Chelex-100 via controlling the HNO3 concentration of the eluent, and the separation is much more effective, simple and economical in comparison with the common method of anion exchange. For an irradiated nickel target with 650 mg Ni, after separation, the loss of Cu radioisotopes in the nickel portion was reduced from 30% to 0.33% of the total initial radioactivity and the nickel mixed into the radioactive products was reduced from 9.5 to 0.5 mg. This significant improvement will make subsequent labeling much easier and reduce consumption of chelating agents and other chemicals during labeling. If the labeled agent is used in human medical applications, the developed method will significantly decrease the uptake of Ni and chelating agents by patients, therefore reducing both the stress on human body associated with clearing the chemicals from blood and tissue and the risk of various types of acute and chronic disorder due to exposure to Ni.


Subject(s)
Chromatography, Ion Exchange/methods , Copper Radioisotopes/chemistry , Copper Radioisotopes/isolation & purification , Nickel/chemistry , Nickel/isolation & purification , Solid Phase Extraction/methods
5.
Chem Commun (Camb) ; (16): 2175-7, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-15846438

ABSTRACT

Suzuki cross-coupling reactions are effected in both conventional organic solvents, under continuous flow conditions at 70 degree C, and in batch mode in supercritical carbon dioxide (scCO2), at temperatures as low as 40 degrees C in the presence of palladium(II) acetate microencapsulated in polyurea [PdEnCat] and tetra-n-butylammonium salts.


Subject(s)
Acetates/chemistry , Biphenyl Compounds/chemical synthesis , Organometallic Compounds/chemistry , Polymers/chemistry , Quaternary Ammonium Compounds/chemistry , Biphenyl Compounds/chemistry , Carbon Dioxide/chemistry , Catalysis , Molecular Structure , Salts/chemistry , Temperature
6.
Chem Commun (Camb) ; (22): 2622-3, 2004 Nov 21.
Article in English | MEDLINE | ID: mdl-15543310

ABSTRACT

The regioselectivity of dipolar cycloadditions of mesitonitrile oxide to various dipolarophiles in supercritical carbon dioxide can be tuned by changes in density, the magnesium bromide-mediated cycloaddition to pent-1-en-3-ol proceeding with higher stereoselectivity than in most conventional solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...