Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 31(5): 1481-7, 2003 Mar 01.
Article in English | MEDLINE | ID: mdl-12595556

ABSTRACT

Reverse transcriptases (RTs) exhibit DNA polymerase and ribonuclease H (RNase H) activities. The RTs of human immunodeficiency viruses type 1 and type 2 (HIV-1 and HIV-2) are composed of two subunits, both sharing the same N-terminus (which encompasses the DNA polymerase domain). The smaller subunit lacks the C-terminal segment of the larger one, which contains the RNase H domain. The DNA polymerase domain of RTs resembles a right hand linked to the RNase H domain by a connection subdomain. Despite the high homology between HIV-1 and HIV-2 RTs, the RNase H activity of the latter is substantially lower than that of HIV-1 RT. The thumb subdomain of the small subunit controls the level of RNase H activity. We show here that Gln294, located in this thumb, is responsible for this difference in activity. A HIV-2 RT mutant, where Gln294 in the small subunit was replaced by a proline (present in HIV-1 RT), has an activity almost 10-fold higher than that of the wild-type RT. A comparative in vitro study of the kinetic parameters of the RNase H activity suggests that residue 294 affects the K(m) rather than the kcat value, influencing the affinity for the RNA.DNA substrate.


Subject(s)
Glutamine/genetics , HIV Reverse Transcriptase/metabolism , RNA-Directed DNA Polymerase/metabolism , Ribonuclease H/metabolism , Amino Acid Sequence , Amino Acid Substitution , DNA-Directed DNA Polymerase/metabolism , HIV Reverse Transcriptase/genetics , HIV-1/enzymology , HIV-2/enzymology , Kinetics , Molecular Sequence Data , Mutation , Protein Subunits/genetics , RNA-Directed DNA Polymerase/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid
2.
J Mol Biol ; 311(5): 957-71, 2001 Aug 31.
Article in English | MEDLINE | ID: mdl-11531332

ABSTRACT

Retroviral reverse transcriptases (RTs) have both DNA polymerase and ribonuclease H (RNase H) activities. The RTs of HIV-1 and HIV-2 are heterodimers of p66/p51 and p68/p54 subunits, respectively. The smaller subunit lacks the C-terminal segment of the larger subunit (which is the RNase H domain). The structure of the DNA polymerase domain of HIV-1 RT resembles a right hand (with fingers, palm and thumb subdomains), linked to the RNase H domain via the connection subdomain. The RNase H activity of the Rod strain of HIV-2 RT is about tenfold lower than that of HIV-1 RT, while the DNA polymerase activity of these RTs is similar. A chimeric RT in which residues 227-427 (which constitute a small part of the palm and the entire thumb and connection subdomains) of the Rod strain of HIV-2 RT were replaced by the corresponding segment from HIV-1 RT, has an RNase H activity as high as HIV-1 RT (despite the fact that the RNase H domain is derived from HIV-2 RT). We analyzed the RNase H activity of wild-type HIV-2 RT from the D-194 strain and compared it with this activity of the RT from the Rod strain of HIV-2 and HIV-1 RT. The level of this activity of both HIV-2 RT strains was low; suggesting that low RNase H activity is a general property of HIV-2 isolates. The in vitro RNase H digestion pattern of the three wild-type RTs was indistinguishable, despite the difference in the level of RNase H activity. We constructed new chimeric HIV-1/HIV-2 RTs, in which protein segments and/or subunits were exchanged. The DNA polymerase activity of the parental HIV-1 and HIV-2 RTs was similar; as expected, the specific activity of the polymerases of all the hybrid RTs were also similar. However, the RNase H specific activity of the chimeric RTs was either high (like HIV-1 RT) or low (like HIV-2 RT). The origin of the thumb subdomain in the small subunit of the chimeric RTs (residues 244-322) determines the level of the RNase H activity. The strand-transfer activity of the chimeric RTs is also affected by the thumb subdomain of the small subunit; transfer was much more efficient if this subdomain was derived from HIV-1 RT. The data can be explained from the three-dimensional structure of HIV-1 RT. The thumb of the smaller subunit contacts the RNase H domain; it is through these contacts that the thumb affects the level of the RNase H activity of RT.


Subject(s)
HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , HIV-2/enzymology , Ribonuclease H/metabolism , Dimerization , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-2/genetics , Models, Molecular , Protein Structure, Tertiary , Protein Subunits , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribonuclease H/chemistry , Ribonuclease H/genetics , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...