Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948875

ABSTRACT

Kidney disease is highly heritable; however, the causal genetic variants, the cell types in which these variants function, and the molecular mechanisms underlying kidney disease remain largely unknown. To identify genetic loci affecting kidney function, we performed a GWAS using multiple kidney function biomarkers and identified 462 loci. To begin to investigate how these loci affect kidney function, we generated single-cell chromatin accessibility (scATAC-seq) maps of the human kidney and identified candidate cis -regulatory elements (cCREs) for kidney podocytes, tubule epithelial cells, and kidney endothelial, stromal, and immune cells. Kidney tubule epithelial cCREs explained 58% of kidney function SNP-heritability and kidney podocyte cCREs explained an additional 6.5% of SNP-heritability. In contrast, little kidney function heritability was explained by kidney endothelial, stromal, or immune cell-specific cCREs. Through functionally informed fine-mapping, we identified putative causal kidney function variants and their corresponding cCREs. Using kidney scATAC-seq data, we created a deep learning model (which we named ChromKid) to predict kidney cell type-specific chromatin accessibility from sequence. ChromKid and allele specific kidney scATAC-seq revealed that many fine-mapped kidney function variants locally change chromatin accessibility in tubule epithelial cells. Enhancer assays confirmed that fine-mapped kidney function variants alter tubule epithelial regulatory element function. To map the genes which these regulatory elements control, we used CRISPR interference (CRISPRi) to target these regulatory elements in tubule epithelial cells and assessed changes in gene expression. CRISPRi of enhancers harboring kidney function variants regulated NDRG1 and RBPMS expression. Thus, inherited differences in tubule epithelial NDRG1 and RBPMS expression may predispose to kidney disease in humans. We conclude that genetic variants affecting tubule epithelial regulatory element function account for most SNP-heritability of human kidney function. This work provides an experimental approach to identify the variants, regulatory elements, and genes involved in polygenic disease.

2.
Sci Data ; 6(1): 285, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772173

ABSTRACT

Metagenomic sequence data from defined mock communities is crucial for the assessment of sequencing platform performance and downstream analyses, including assembly, binning and taxonomic assignment. We report a comparison of shotgun metagenome sequencing and assembly metrics of a defined microbial mock community using the Oxford Nanopore Technologies (ONT) MinION, PacBio and Illumina sequencing platforms. Our synthetic microbial community BMock12 consists of 12 bacterial strains with genome sizes spanning 3.2-7.2 Mbp, 40-73% GC content, and 1.5-7.3% repeats. Size selection of both PacBio and ONT sequencing libraries prior to sequencing was essential to yield comparable relative abundances of organisms among all sequencing technologies. While the Illumina-based metagenome assembly yielded good coverage with few misassemblies, contiguity was greatly improved by both, Illumina + ONT and Illumina + PacBio hybrid assemblies but increased misassemblies, most notably in genomes with high sequence similarity to each other. Our resulting datasets allow evaluation and benchmarking of bioinformatics software on Illumina, PacBio and ONT platforms in parallel.


Subject(s)
Metagenome , Microbiota , Sequence Analysis, DNA/methods , Bacteria/classification , High-Throughput Nucleotide Sequencing
3.
Bioinformatics ; 32(13): 1921-1924, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27153570

ABSTRACT

MOTIVATION: Long arrays of near-identical tandem repeats are a common feature of centromeric and subtelomeric regions in complex genomes. These sequences present a source of repeat structure diversity that is commonly ignored by standard genomic tools. Unlike reads shorter than the underlying repeat structure that rely on indirect inference methods, e.g. assembly, long reads allow direct inference of satellite higher order repeat structure. To automate characterization of local centromeric tandem repeat sequence variation we have designed Alpha-CENTAURI (ALPHA satellite CENTromeric AUtomated Repeat Identification), that takes advantage of Pacific Bioscience long-reads from whole-genome sequencing datasets. By operating on reads prior to assembly, our approach provides a more comprehensive set of repeat-structure variants and is not impacted by rearrangements or sequence underrepresentation due to misassembly. RESULTS: We demonstrate the utility of Alpha-CENTAURI in characterizing repeat structure for alpha satellite containing reads in the hydatidiform mole (CHM1, haploid-like) genome. The pipeline is designed to report local repeat organization summaries for each read, thereby monitoring rearrangements in repeat units, shifts in repeat orientation and sites of array transition into non-satellite DNA, typically defined by transposable element insertion. We validate the method by showing consistency with existing centromere high order repeat references. Alpha-CENTAURI can, in principle, run on any sequence data, offering a method to generate a sequence repeat resolution that could be readily performed using consensus sequences available for other satellite families in genomes without high-quality reference assemblies. AVAILABILITY AND IMPLEMENTATION: Documentation and source code for Alpha-CENTAURI are freely available at http://github.com/volkansevim/alpha-CENTAURI CONTACT: ali.bashir@mssm.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Centromere/genetics , Computational Biology/methods , Genomics , Sequence Analysis, DNA/methods , Tandem Repeat Sequences , Algorithms , Consensus Sequence , Female , Humans , Hydatidiform Mole/genetics , Pregnancy
4.
PLoS Biol ; 11(10): e1001673, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24130459

ABSTRACT

A hallmark of the G1/S transition in budding yeast cell cycle is the proteolytic degradation of the B-type cyclin-Cdk stoichiometric inhibitor Sic1. Deleting SIC1 or altering Sic1 degradation dynamics increases genomic instability. Certain key facts about the parts of the G1/S circuitry are established: phosphorylation of Sic1 on multiple sites is necessary for its destruction, and both the upstream kinase Cln1/2-Cdk1 and the downstream kinase Clb5/6-Cdk1 can phosphorylate Sic1 in vitro with varied specificity, cooperativity, and processivity. However, how the system works as a whole is still controversial due to discrepancies between in vitro, in vivo, and theoretical studies. Here, by monitoring Sic1 destruction in real time in individual cells under various perturbations to the system, we provide a clear picture of how the circuitry functions as a switch in vivo. We show that Cln1/2-Cdk1 sets the proper timing of Sic1 destruction, but does not contribute to its destruction speed; thus, it acts only as a trigger. Sic1's inhibition target Clb5/6-Cdk1 controls the speed of Sic1 destruction through a double-negative feedback loop, ensuring a robust all-or-none transition for Clb5/6-Cdk1 activity. Furthermore, we demonstrate that the degradation of a single-phosphosite mutant of Sic1 is rapid and switch-like, just as the wild-type form. Our mathematical model confirms our understanding of the circuit and demonstrates that the substrate sharing between the two kinases is not a redundancy but a part of the design to overcome the trade-off between the timing and sharpness of Sic1 degradation. Our study provides direct mechanistic insight into the design features underlying the yeast G1/S switch.


Subject(s)
G1 Phase , S Phase , Saccharomyces cerevisiae/cytology , Feedback, Physiological , Phosphorylation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Time Factors
5.
Quant Biol ; 1(3): 221-226, 2013 Sep.
Article in English | MEDLINE | ID: mdl-25383233
6.
PLoS Comput Biol ; 6(7): e1000842, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20628620

ABSTRACT

A recently published transcriptional oscillator associated with the yeast cell cycle provides clues and raises questions about the mechanisms underlying autonomous cyclic processes in cells. Unlike other biological and synthetic oscillatory networks in the literature, this one does not seem to rely on a constitutive signal or positive auto-regulation, but rather to operate through stable transmission of a pulse on a slow positive feedback loop that determines its period. We construct a continuous-time Boolean model of this network, which permits the modeling of noise through small fluctuations in the timing of events, and show that it can sustain stable oscillations. Analysis of simpler network models shows how a few building blocks can be arranged to provide stability against fluctuations. Our findings suggest that the transcriptional oscillator in yeast belongs to a new class of biological oscillators.


Subject(s)
Cell Cycle/physiology , Computational Biology/methods , Models, Genetic , Transcription, Genetic/physiology , Yeasts/physiology , Feedback, Physiological/physiology , Gene Regulatory Networks , Models, Statistical , Yeasts/cytology
7.
J Theor Biol ; 253(2): 323-32, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18417154

ABSTRACT

Robustness to mutations and noise has been shown to evolve through stabilizing selection for optimal phenotypes in model gene regulatory networks. The ability to evolve robust mutants is known to depend on the network architecture. How do the dynamical properties and state-space structures of networks with high and low robustness differ? Does selection operate on the global dynamical behavior of the networks? What kind of state-space structures are favored by selection? We provide damage propagation analysis and an extensive statistical analysis of state spaces of these model networks to show that the change in their dynamical properties due to stabilizing selection for optimal phenotypes is minor. Most notably, the networks that are most robust to both mutations and noise are highly chaotic. Certain properties of chaotic networks, such as being able to produce large attractor basins, can be useful for maintaining a stable gene-expression pattern. Our findings indicate that conventional measures of stability, such as damage propagation, do not provide much information about robustness to mutations or noise in model gene regulatory networks.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Mutation , Animals , Biological Evolution , Selection, Genetic
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 1): 051920, 2007 May.
Article in English | MEDLINE | ID: mdl-17677111

ABSTRACT

We study an individual-based predator-prey model of biological coevolution, using linear stability analysis and large-scale kinetic Monte Carlo simulations. The model exhibits approximate 1/f noise in diversity and population-size fluctuations, and it generates a sequence of quasisteady communities in the form of simple food webs. These communities are quite resilient toward the loss of one or a few species, which is reflected in different power-law exponents for the durations of communities and the lifetimes of species. The exponent for the former is near -1 , while the latter is close to -2 . Statistical characteristics of the evolving communities, including degree (predator and prey) distributions and proportions of basal, intermediate, and top species, compare reasonably with data for real food webs.


Subject(s)
Biological Evolution , Ecosystem , Models, Biological , Population Dynamics , Predatory Behavior/physiology , Animals , Computer Simulation , Humans , Population Density , Population Growth
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056115, 2006 May.
Article in English | MEDLINE | ID: mdl-16803006

ABSTRACT

We study the growth of a directed network, in which the growth is constrained by the cost of adding links to the existing nodes. We propose a preferential-attachment scheme, in which a new node attaches to an existing node i with probability II(k(i)) approximately k(-1), where k(i) is the number of outgoing links at i. We calculate the degree distribution for the outgoing links in the asymptotic regime t --> infinity, n(k) both analytically and by Monte Carlo simulations. The distribution decays like kmu(k)/Tau(k) for large k, where is a constant. We investigate the effect of this preferential-attachment scheme, by comparing the results to an equivalent growth model with a degree-independent probability of attachment, which gives an exponential outdegree distribution. Also, we relate this mechanism to simple food-web models by implementing it in the cascade model. We show that the low-degree preferential-attachment mechanism breaks the symmetry between in- and outdegree distributions in the cascade model. It also causes a faster decay in the tails of the outdegree distributions for both our network growth model and the cascade model.

SELECTION OF CITATIONS
SEARCH DETAIL
...