Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 6931-6943, 2024.
Article in English | MEDLINE | ID: mdl-39005960

ABSTRACT

Purpose: Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods: Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results: ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion: This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , Animals , Vero Cells , Chlorocebus aethiops , Humans , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing/pharmacology , HEK293 Cells , Virus Internalization/drug effects
2.
Stem Cell Reports ; 17(12): 2629-2642, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36332631

ABSTRACT

Epigenetic reprogramming to pluripotency requires extensive remodeling of chromatin landscapes to silence existing cell-type-specific genes and activate pluripotency genes. ATP-dependent chromatin remodeling complexes are important regulators of chromatin structure and gene expression; however, the role of recently identified Bromodomain-containing protein 9 (BRD9) and the associated non-canonical BRG1-associated factors (ncBAF) complex in reprogramming remains unknown. Here, we show that genetic or chemical inhibition of BRD9, as well as ncBAF complex subunit GLTSCR1, but not the closely related BRD7, increase human somatic cell reprogramming efficiency and can replace KLF4 and c-MYC. We find that BRD9 is dispensable for human induced pluripotent stem cells under primed but not under naive conditions. Mechanistically, BRD9 inhibition downregulates fibroblast-related genes and decreases chromatin accessibility at somatic enhancers. BRD9 maintains the expression of transcriptional regulators MN1 and ZBTB38, both of which impede reprogramming. Collectively, these results establish BRD9 as an important safeguarding factor for somatic cell identity whose inhibition lowers chromatin-based barriers to reprogramming.


Subject(s)
Induced Pluripotent Stem Cells , Transcriptome , Humans , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Cellular Reprogramming/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism
3.
Front Cell Dev Biol ; 10: 958398, 2022.
Article in English | MEDLINE | ID: mdl-36036008

ABSTRACT

Friedreich's ataxia (FRDA, OMIM#229300) is the most common hereditary ataxia, resulting from the reduction of frataxin protein levels due to the expansion of GAA repeats in the first intron of the FXN gene. Why the triplet repeat expansion causes a decrease in Frataxin protein levels is not entirely known. Generation of effective FRDA disease models is crucial for answering questions regarding the pathophysiology of this disease. There have been considerable efforts to generate in vitro and in vivo models of FRDA. In this perspective article, we highlight studies conducted using FRDA animal models, patient-derived materials, and particularly induced pluripotent stem cell (iPSC)-derived models. We discuss the current challenges in using FRDA animal models and patient-derived cells. Additionally, we provide a brief overview of how iPSC-based models of FRDA were used to investigate the main pathways involved in disease progression and to screen for potential therapeutic agents for FRDA. The specific focus of this perspective article is to discuss the outlook and the remaining challenges in the context of FRDA iPSC-based models.

4.
Epigenetics Chromatin ; 14(1): 32, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215314

ABSTRACT

BACKGROUND: The histone H3 lysine 79 (H3K79) methyltransferase DOT1L is a key chromatin-based barrier to somatic cell reprogramming. However, the mechanisms by which DOT1L safeguards cell identity and somatic-specific transcriptional programs remain unknown. RESULTS: We employed a proteomic approach using proximity-based labeling to identify DOT1L-interacting proteins and investigated their effects on reprogramming. Among DOT1L interactors, suppression of AF10 (MLLT10) via RNA interference or CRISPR/Cas9, significantly increases reprogramming efficiency. In somatic cells and induced pluripotent stem cells (iPSCs) higher order H3K79 methylation is dependent on AF10 expression. In AF10 knock-out cells, re-expression wild-type AF10, but not a DOT1L binding-impaired mutant, rescues overall H3K79 methylation and reduces reprogramming efficiency. Transcriptomic analyses during reprogramming show that AF10 suppression results in downregulation of fibroblast-specific genes and accelerates the activation of pluripotency-associated genes. CONCLUSIONS: Our findings establish AF10 as a novel barrier to reprogramming by regulating H3K79 methylation and thereby sheds light on the mechanism by which cell identity is maintained in somatic cells.


Subject(s)
Cellular Reprogramming , Histone-Lysine N-Methyltransferase , Transcription Factors , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation , Proteomics , Transcription Factors/metabolism
5.
Stem Cell Reports ; 13(4): 627-641, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31522975

ABSTRACT

Organoid technologies have become a powerful emerging tool to model liver diseases, for drug screening, and for personalized treatments. These applications are, however, limited in their capacity to generate functional hepatocytes in a reproducible and efficient manner. Here, we generated and characterized the hepatic organoid (eHEPO) culture system using human induced pluripotent stem cell (iPSC)-derived EpCAM-positive endodermal cells as an intermediate. eHEPOs can be produced within 2 weeks and expanded long term (>16 months) without any loss of differentiation capacity to mature hepatocytes. Starting from patient-specific iPSCs, we modeled citrullinemia type 1, a urea cycle disorder caused by mutations in the argininosuccinate synthetase (ASS1) enzyme. The disease-related ammonia accumulation phenotype in eHEPOs could be reversed by the overexpression of the wild-type ASS1 gene, which also indicated that this model is amenable to genetic manipulation. Thus, eHEPOs are excellent unlimited cell sources to generate functional hepatic organoids in a fast and efficient manner.


Subject(s)
Cell Differentiation , Disease Susceptibility , Endoderm/cytology , Hepatocytes/cytology , Liver/cytology , Liver/embryology , Organogenesis , Organoids/cytology , Biomarkers , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/cytology , Tissue Culture Techniques
6.
Nat Chem Biol ; 15(5): 519-528, 2019 05.
Article in English | MEDLINE | ID: mdl-30962627

ABSTRACT

Silencing of the somatic cell type-specific genes is a critical yet poorly understood step in reprogramming. To uncover pathways that maintain cell identity, we performed a reprogramming screen using inhibitors of chromatin factors. Here, we identify acetyl-lysine competitive inhibitors targeting the bromodomains of coactivators CREB (cyclic-AMP response element binding protein) binding protein (CBP) and E1A binding protein of 300 kDa (EP300) as potent enhancers of reprogramming. These inhibitors accelerate reprogramming, are critical during its early stages and, when combined with DOT1L inhibition, enable efficient derivation of human induced pluripotent stem cells (iPSCs) with OCT4 and SOX2. In contrast, catalytic inhibition of CBP/EP300 prevents iPSC formation, suggesting distinct functions for different coactivator domains in reprogramming. CBP/EP300 bromodomain inhibition decreases somatic-specific gene expression, histone H3 lysine 27 acetylation (H3K27Ac) and chromatin accessibility at target promoters and enhancers. The master mesenchymal transcription factor PRRX1 is one such functionally important target of CBP/EP300 bromodomain inhibition. Collectively, these results show that CBP/EP300 bromodomains sustain cell-type-specific gene expression and maintain cell identity.


Subject(s)
Benzimidazoles/pharmacology , CREB-Binding Protein/antagonists & inhibitors , Cellular Reprogramming/drug effects , E1A-Associated p300 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Isoxazoles/pharmacology , Oxazepines/pharmacology , Piperidines/pharmacology , Benzimidazoles/chemistry , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Enzyme Inhibitors/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Isoxazoles/chemistry , Molecular Structure , Oxazepines/chemistry , Piperidines/chemistry , Protein Domains/drug effects
7.
FEBS Lett ; 590(9): 1324-34, 2016 05.
Article in English | MEDLINE | ID: mdl-27060571

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)-ß. miRNA are short, noncoding gene transcripts involved in the negative regulation of specific target genes, through their interactions with mRNA. Previous studies have proposed that mRNA-145 (miR-145) may interact with SMAD3, an important downstream signalling molecule of the TGF-ß pathway. TGF-ß was used to stimulate primary human ASM cells isolated from healthy nonsmokers, healthy smokers and COPD patients. This resulted in a TGF-ß-dependent increase in CXCL8 and IL-6 release, most notably in the cells from COPD patients. TGF-ß stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR-145 expression. Regulation of miR-145 was found to be negatively controlled by pathways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent, overexpression of miR-145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL-6 and CXCL8 release, to levels comparable to the nonsmoker controls. Therefore, this study suggests that miR-145 negatively regulates pro-inflammatory cytokine release from ASM cells in COPD by targeting SMAD3.


Subject(s)
MicroRNAs/genetics , Muscle, Smooth/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Case-Control Studies , Cells, Cultured , Female , Humans , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Lung/metabolism , Lung/pathology , MAP Kinase Signaling System , Male , MicroRNAs/metabolism , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Smad3 Protein/genetics , Smad3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...