Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 97(9): 1181-1198, 2021.
Article in English | MEDLINE | ID: mdl-34138666

ABSTRACT

PURPOSE: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.


Subject(s)
Chromosomes, Human/genetics , Chromosomes, Human/radiation effects , Radiometry , Chromosome Aberrations/radiation effects , Humans , Radiation Exposure/analysis , Retrospective Studies
2.
Life (Basel) ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35054413

ABSTRACT

BACKGROUND: Up to 95% of irradiated patients suffer from ionizing radiation (IR) induced early skin reaction, acute radiation dermatitis (ARD). Some experts think that additional skin hydration can reduce acute skin reactions. Individual radiosensitivity (IRS) determined from lymphocytes may help to predict acute radiation toxicity. The purpose of this study is to evaluate the clinical manifestation of ARD in different skincare groups during whole breast radiotherapy depending on IRS and other risk factors. METHODS: A total of 108 early-stage breast cancer patients were randomized into best supportive care (BSC) and additional skincare (ASC) groups. IRS was evaluated using a G2 assay modified with caffeine-induced G2 checkpoint arrest. All patients received a 50 Gy dose to the breast planning target volume (PTV). Clinical assessment of ARD symptoms according to the CTCAE grading scale was performed once a week. RESULTS: IRS was successfully determined for 91 out of 108 patients. A total of 10 patients (11%) had normal IRS, 47 patients (52%) were categorized as radiosensitive, and 34 (37%) as highly radiosensitive. There was no significant difference in the manifestation of ARD between patient groups by skincare or IRS. According to logistic regression, patients with bigger breasts were prone to more severe ARD (p = 0.002). CONCLUSIONS: The additional skincare did not improve skin condition during RT. A total of 89% of patients had increased radiosensitivity. IRS determined before RT did not show the predictive value for the manifestation of ARD. Logistic regression revealed that breast volume was the most significant risk factor for the manifestation of ARD.

3.
Genome Integr ; 8: 1, 2017.
Article in English | MEDLINE | ID: mdl-28250908

ABSTRACT

Patients receiving identical radiation treatments experience different effects, from undetectable to severe, on normal tissues. A crucial factor of radiotherapy related side effects is individual radiosensitivity. It is difficult to spare surrounding normal tissues delivering radiation to cancer cells during radiotherapy. Therefore, it may be useful to develop a simple routine cytogenetic assay which would allow the screening of a large number of individuals for radiosensitivity optimizing tumor control rates and minimizing severe radiotherapy effects with possibility to predict risk level for developing more severe early normal tissue adverse events after irradiation. This study was conducted to assess the correlation between in vitro radiosensitivity of peripheral blood lymphocytes from cancer patients who are undergoing radiotherapy using the cytokinesis-block micronucleus (CBMN), G2 chromosomal radiosensitivity assays, and normal tissue acute side effects. The CBMN and G2 chromosomal radiosensitivity assays were performed on blood samples taken from cancer patients before radiotherapy, after first fractionation, and after radiotherapy. Acute normal tissue reactions were graded according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer. This study suggests that there is a correlation between higher frequency of micronuclei after in vitro irradiation of blood samples and higher degree of normal tissue reactions. In addition, higher number of chromatid breaks was observed in patients with more severe normal tissue reactions. This pilot study included only 5 cancer patients, and therefore, further studies with a bigger cohort are required to identify radiosensitive patients.

4.
J Plant Res ; 129(3): 551-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26875181

ABSTRACT

The effect of nickel (Ni) on the generation of plant bioelectrical signals was evaluated in Nitellopsis obtusa, a Characean model organism. Conventional glass-microelectrode technique and K(+)-anaesthesia method in current-clamp and voltage-clamp modes were used for the measurement and analysis of electrical parameters. Ni(2+) treatment rapidly influenced the action potential (AP) parameters namely, excitation threshold, AP peak and duration, membrane potential at various voltages and dynamics of ion currents. We conclude that altered electrical signaling pathway in the test organism constituted the early target for Ni toxicity imposition. The observed Ni interference could be ascribed to disturbed [Ca(2+)]cyt content, impaired Cl(-) and K(+) channels activity resulting in decreased excitability and repolarization rate in generated AP.


Subject(s)
Characeae/physiology , Electrophysiological Phenomena/drug effects , Nickel/pharmacology , Action Potentials/drug effects , Action Potentials/radiation effects , Characeae/drug effects , Characeae/radiation effects , Chlorides/metabolism , Electrophysiological Phenomena/radiation effects , Light , Proton Pumps/metabolism , Solutions
5.
J Environ Radioact ; 136: 10-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24858694

ABSTRACT

The impact of low-dose ionizing radiation on the electrical signalling pattern and membrane properties of the characea Nitellopsis obtusa was examined using conventional glass-microelectrode and voltage-clamp techniques. The giant cell was exposed to a ubiquitous radionuclide of high biological importance - tritium - for low-dose irradiation. Tritium was applied as tritiated water with an activity concentration of 15 kBq L(-1) (an external dose rate that is approximately 0.05 µGy h(-1) above the background radiation level); experiments indicated that this was the lowest effective concentration. Investigating the dynamics of electrical excitation of the plasma membrane (action potential) showed that exposing Characeae to tritium for half an hour prolonged the repolarization phase of the action potential by approximately 35%: the repolarization rate decreased from 39.2 ± 3.1 mV s(-1) to 25.5 ± 1,8 mV s(-1) due to tritium. Voltage-clamp measurements showed that the tritium exposure decreased the Cl(-) efflux and Ca(2+) influx involved in generating an action potential by approximately 27% (Δ = 12.4 ± 1.1 µA cm(-2)) and 64% (Δ = -5.3 ± 0.4 µA cm(-2)), respectively. The measured alterations in the action potential dynamics and in the chloride and calcium ion transport due to the exogenous low-dose tritium exposure provide the basis for predicting possible further impairments of plasma membrane regulatory functions, which subsequently disturb essential physiological processes of the plant cell.


Subject(s)
Characeae/radiation effects , Electrophysiological Phenomena/radiation effects , Radiation, Ionizing , Tritium/toxicity , Biomarkers , Characeae/physiology , Dose-Response Relationship, Radiation , Plant Cells/radiation effects , Risk Assessment , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...