Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R109-R121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38766772

ABSTRACT

Rhythmic feeding behavior is critical for regulating phase and amplitude in the ≈24-h variation of heart rate (RR intervals), ventricular repolarization (QT intervals), and core body temperature in mice. We hypothesized changes in cardiac electrophysiology associated with feeding behavior were secondary to changes in core body temperature. Telemetry was used to record electrocardiograms and core body temperature in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting food access to the light cycle. Light cycle-restricted feeding modified the phase and amplitude of 24-h rhythms in RR and QT intervals, and core body temperature to realign with the new feeding time. Changes in core body temperature alone could not account for changes in phase and amplitude in the ≈24-h variation of the RR intervals. Heart rate variability analysis and inhibiting ß-adrenergic and muscarinic receptors suggested that changes in the phase and amplitude of 24-h rhythms in RR intervals were secondary to changes in autonomic signaling. In contrast, changes in QT intervals closely mirrored changes in core body temperature. Studies at thermoneutrality confirmed that the daily variation in QT interval, but not RR interval, primarily reflected daily changes in core body temperature (even in ad libitum-fed conditions). Correcting the QT interval for differences in core body temperature helped unmask QT interval prolongation after starting light cycle-restricted feeding and in a mouse model of long QT syndrome. We conclude feeding behavior alters autonomic signaling and core body temperature to regulate phase and amplitude in RR and QT intervals, respectively.NEW & NOTEWORTHY We used time-restricted feeding and thermoneutrality to demonstrate that different mechanisms regulate the 24-h rhythms in heart rate and ventricular repolarization. The daily rhythm in heart rate reflects changes in autonomic input, whereas daily rhythms in ventricular repolarization reflect changes in core body temperature. This novel finding has major implications for understanding 24-h rhythms in mouse cardiac electrophysiology, arrhythmia susceptibility in transgenic mouse models, and interpretability of cardiac electrophysiological data acquired in thermoneutrality.


Subject(s)
Body Temperature , Circadian Rhythm , Feeding Behavior , Heart Rate , Mice, Inbred C57BL , Animals , Circadian Rhythm/physiology , Heart Rate/physiology , Feeding Behavior/physiology , Male , Body Temperature/physiology , Mice , Electrocardiography , Photoperiod , Time Factors , Autonomic Nervous System/physiology
2.
bioRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38659967

ABSTRACT

It has been well established that cardiovascular diseases exhibit significant differences between sexes in both preclinical models and humans. In addition, there is growing recognition that disrupted circadian rhythms can contribute to the onset and progression of cardiovascular diseases. However little is known about sex differences between the cardiac circadian clock and circadian transcriptomes in mice. Here, we show that the the core clock genes are expressed in common in both sexes but the circadian transcriptome of the mouse heart is very sex-specific. Hearts from female mice expressed significantly more rhythmically expressed genes (REGs) than male hearts and the temporal pattern of REGs was distinctly different between sexes. We next used a cardiomyocyte-specific knock out of the core clock gene, Bmal1, to investigate its role in sex-specific gene expression in the heart. All sex differences in the circadian transcriptomes were significantly diminished with cardiomyocyte-specific loss of Bmal1. Surprisingly, loss of cardiomyocyte Bmal1 also resulted in a roughly 8-fold reduction in the number of all the differentially expressed genes between male and female hearts. We conclude that cardiomyocyte-specific Bmal1, and potentially the core clock mechanism, is vital in conferring sex-specific gene expression in the adult mouse heart.

3.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37961515

ABSTRACT

Circadian rhythms in physiology and behavior are intrinsic ~24-hour cycles regulated by biological clocks (i.e., circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. Studies suggest that circadian clock signaling in the suprachiasmatic nucleus of the hypothalamus and cardiomyocytes shape day/night rhythms in cardiac electrophysiology (i.e., RR and QT intervals). However, studies also show that the day/night rhythm of the RR and QT intervals depends on the timing of feeding in mice. This study determined the mechanisms for how feeding impacts day/night rhythms in the RR and QT intervals in mice. Telemetry was used to record electrocardiograms, core body temperature, and activity in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting the timing of feeding to the light cycle. Light-cycle restricted feeding caused a simultaneous realignment of RR, QT, and PR intervals and body temperature to the new feeding time. Correcting the QT interval for body temperature eliminated the 24-hour rhythm in the QT interval. Estimating the impact of temperature on RR intervals did not account for the daily change in the RR interval during light-cycle restricted feeding. Cross-correlation analysis suggested daily rhythm in RR intervals correlated with heart rate variability measures but not activity. Injecting mice undergoing light cycle-restricted feeding with propranolol and atropine caused a complete loss in the 24-hour rhythm in the RR interval. We conclude that feeding behavior impacts body temperature and autonomic regulation of the heart to generate 24-hour rhythms in RR and QT intervals.

4.
J Vis Exp ; (124)2017 06 13.
Article in English | MEDLINE | ID: mdl-28654072

ABSTRACT

Laryngeal dysfunction in the elderly is a major cause of disability, from voice disorders to dysphagia and loss of airway protective reflexes. Few, if any, therapies exist that target age-related laryngeal muscle dysfunction. Neurotrophins are involved in muscle innervation and differentiation of neuromuscular junctions (NMJs). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. The neuromuscular junctions (NMJs) become smaller and less abundant in aging rat laryngeal muscles, with evidence of functional denervation. We explored the effects of NTF4 for future clinical use as a therapeutic to improve function in aging human laryngeal muscles. Here, we provide the detailed protocol for systemic application and direct injection of NTF4 to investigate the ability of aging rat laryngeal muscle to remodel in response to NTF4 application. In this method, rats either received NTF4 either systemically via osmotic pump or by direct injection through the vocal folds. Laryngeal muscles were then dissected and used for histological examination of morphology and age-related denervation.


Subject(s)
Aging/physiology , Laryngeal Muscles/drug effects , Nerve Growth Factors/administration & dosage , Nerve Growth Factors/therapeutic use , Vocal Cord Dysfunction/drug therapy , Animals , Humans , Infusion Pumps, Implantable , Infusions, Subcutaneous , Injections, Intramuscular , Laryngeal Muscles/physiology , Neuromuscular Junction/drug effects , Rats, Inbred F344 , Synaptic Transmission/drug effects , Vocal Cord Dysfunction/physiopathology
5.
Physiol Rep ; 4(10)2016 May.
Article in English | MEDLINE | ID: mdl-27207784

ABSTRACT

Clinical evidence suggests that laryngeal muscle dysfunction is associated with human aging. Studies in animal models have reported morphological changes consistent with denervation in laryngeal muscles with age. Life-long laryngeal muscle activity relies on cytoskeletal integrity and nerve-muscle communication at the neuromuscular junction (NMJ). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. We hypothesized that treatment with neurotrophin 4 (NTF4) would modify the morphology and functional innervation of aging rat laryngeal muscles. Fifty-six Fischer 344xBrown Norway rats (6- and 30-mo age groups) were used to evaluate to determine if NTF4, given systemically (n = 32) or directly (n = 24), would improve the morphology and functional innervation of aging rat thyroarytenoid muscles. Results demonstrate the ability of rat laryngeal muscles to remodel in response to neurotrophin application. Changes were demonstrated in fiber size, glycolytic capacity, mitochondrial, tyrosine kinase receptors (Trk), NMJ content, and denervation in aging rat thyroarytenoid muscles. This study suggests that growth factors may have therapeutic potential to ameliorate aging-related laryngeal muscle dysfunction.


Subject(s)
Aging/drug effects , Aging/metabolism , Laryngeal Muscles/drug effects , Laryngeal Muscles/metabolism , Nerve Growth Factors/pharmacology , Animals , Intercellular Signaling Peptides and Proteins/pharmacology , Rats , Rats, Inbred BN , Rats, Inbred F344 , Treatment Outcome
6.
Emerg Infect Dis ; 15(5): 696-703, 2009 May.
Article in English | MEDLINE | ID: mdl-19402954

ABSTRACT

Chronic wasting disease (CWD) is a contagious, fatal prion disease of deer and elk that continues to emerge in new locations. To explore the means by which prions are transmitted with high efficiency among cervids, we examined prion infectivity in the apical skin layer covering the growing antler (antler velvet) by using CWD-susceptible transgenic mice and protein misfolding cyclic amplification. Our finding of prions in antler velvet of CWD-affected elk suggests that this tissue may play a role in disease transmission among cervids. Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. The fact that CWD prion incubation times in transgenic mice expressing elk prion protein are consistently more rapid raises the possibility that residue 226, the sole primary structural difference between deer and elk prion protein, may be a major determinant of CWD pathogenesis.


Subject(s)
Antlers/metabolism , Deer , PrPSc Proteins/metabolism , PrPSc Proteins/pathogenicity , Wasting Disease, Chronic/metabolism , Wasting Disease, Chronic/transmission , Animals , Animals, Wild , Brain/metabolism , Disease Transmission, Infectious , Male , Mice , Mice, Transgenic , PrPC Proteins/metabolism , PrPSc Proteins/chemistry , Protein Folding , Species Specificity , Wasting Disease, Chronic/pathology
7.
PLoS Pathog ; 4(8): e1000139, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18769716

ABSTRACT

Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.


Subject(s)
Prions/metabolism , Protein Folding , Wasting Disease, Chronic/metabolism , Wasting Disease, Chronic/transmission , Animals , Deer , Female , Mice , Mice, Transgenic , Species Specificity , Wasting Disease, Chronic/pathology
8.
J Gen Virol ; 89(Pt 2): 598-608, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18198392

ABSTRACT

The elk prion protein gene (PRNP) encodes either methionine (M) or leucine (L) at codon 132, the L132 allele apparently affording protection against chronic wasting disease (CWD). The corresponding human codon 129 polymorphism influences the host range of bovine spongiform encephalopathy (BSE) prions. To fully address the influence of this cervid polymorphism on CWD pathogenesis, we created transgenic (Tg) mice expressing cervid PrPC with L at residue 132, referred to as CerPrPC-L132, and compared the transmissibility of CWD prions from elk of defined PRNP genotypes, namely homozygous M/M or L/L or heterozygous M/L, in these Tg mice with previously described Tg mice expressing CerPrPC-M132, referred to as Tg(CerPrP) mice. While Tg(CerPrP) mice were consistently susceptible to CWD prions from elk of all three genotypes, Tg(CerPrP-L132) mice uniformly failed to develop disease following challenge with CWD prions. In contrast, SSBP/1 sheep scrapie prions transmitted efficiently to both Tg(CerPrP) and Tg(CerPrP-L132) mice. Our findings suggest that the elk 132 polymorphism controls prion susceptibility at the level of prion strain selection and that cervid PrP L132 severely restricts propagation of CWD prions. We speculate that the L132 polymorphism results in less efficient conversion of CerPrPC-L132 by CWD prions, an effect that is overcome by the SSBP/1 strain. Our studies show the accumulation of subclinical levels of CerPrPSc in aged asymptomatic CWD-inoculated Tg(CerPrP-L132) mice and also suggests the establishment of a latent infection state in apparently healthy elk expressing this seemingly protective allele.


Subject(s)
PrPC Proteins/genetics , Prion Diseases/transmission , Prions/metabolism , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/transmission , Animals , Codon , Deer , Disease Models, Animal , Disease Susceptibility , Mice , Mice, Transgenic , Polymorphism, Genetic , PrPC Proteins/isolation & purification , Scrapie
9.
Science ; 311(5764): 1117, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16439622

ABSTRACT

The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.


Subject(s)
Deer , Muscle, Skeletal/chemistry , PrPSc Proteins/analysis , Prions/analysis , Wasting Disease, Chronic/metabolism , Wasting Disease, Chronic/transmission , Animals , Brain Chemistry , Humans , Mice , Mice, Transgenic , Tissue Extracts/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...