Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 20499, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26848095

ABSTRACT

In this paper a practical case of a finite periodic Parity Time chain made of resonant dielectric cylinders is considered. The paper analyzes a more general case where PT symmetry is achieved by modulating both the real and imaginary part of the material refractive index along the resonator chain. The band-structure of the finite periodic PT resonator chains is compared to infinite chains in order to understand the complex interdependence of the Bloch phase and the amount of the gain/loss in the system that causes the PT symmetry to break. The results show that the type of the modulation along the unit cell can significantly affect the position of the threshold point of the PT system. In all cases the lowest threshold is achieved near the end of the Brillouin zone. In the case of finite PT-chains, and for a particular type of modulation, early PT symmetry breaking is observed and shown to be caused by the presence of termination states localized at the edges of the finite chain resulting in localized lasing and dissipative modes at each end of the chain.

2.
Opt Express ; 23(9): 11493-507, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969244

ABSTRACT

The paper reports on the coupling of Parity-Time (PT)-symmetric whispering gallery resonators with realistic material and gain/loss models. Response of the PT system is analyzed for the case of low and high material and gain dispersion, and also for two practical scenarios when the pump frequency is not aligned with the resonant frequency of the desired whispering gallery mode and when there is imbalance in the gain/loss profile. The results show that the presence of dispersion and frequency misalignment causes skewness in frequency bifurcation and significant reduction of the PT breaking point, respectively. Finally, we demonstrate a lasing mode operation which occurs due to an early PT-breaking by increasing loss in a PT system with unbalanced gain and loss.

3.
Opt Lett ; 39(9): 2603-6, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784056

ABSTRACT

We report on the impact of realistic gain and loss models on the bistable operation of nonlinear parity-time (PT) Bragg gratings. In our model we include both dispersive and saturable gain and show that levels of gain/loss saturation can have a significant impact on the bistable operation of a nonlinear PT Bragg grating based on GaAs material. The hysteresis of the nonlinear PT Bragg grating is analyzed for different levels of gain and loss and different saturation levels. We show that high saturation levels can improve the nonlinear operation by reducing the intensity at which the bistability occurs. However, when the saturation intensity is low, saturation inhibits the PT characteristics of the grating.

4.
Opt Lett ; 37(23): 4922-4, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202091

ABSTRACT

We report on the fabrication and optical assessment of an all-solid tellurite-glass photonic bandgap fiber. The manufacturing process via a preform drawing approach and the fiber characterization procedures are described and discussed. The fiber exhibits some minor morphological deformations that do not prevent the observation of optical confinement within the fiber by bandgap effects. The experimental fiber attenuation spectrum displays clear bandgap confinement regions whose positions are confirmed by modeling the guiding properties of the ideal geometry using a plane-wave expansion method. The model identifies the bound modes of the structure and provides confirmation of experimentally observed mode field profiles.

5.
J Opt Soc Am A Opt Image Sci Vis ; 27(10): 2156-68, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20922006

ABSTRACT

This paper reports on two important issues that arise in the context of the global optimization of photonic components where large problem spaces must be investigated. The first is the implementation of a fast simulation method and associated matrix solver for assessing particular designs and the second, the strategies that a designer can adopt to control the size of the problem design space to reduce runtimes without compromising the convergence of the global optimization tool. For this study an analytical simulation method based on Mie scattering and a fast matrix solver exploiting the fast multipole method are combined with genetic algorithms (GAs). The impact of the approximations of the simulation method on the accuracy and runtime of individual design assessments and the consequent effects on the GA are also examined. An investigation of optimization strategies for controlling the design space size is conducted on two illustrative examples, namely, 60° and 90° waveguide bends based on photonic microstructures, and their effectiveness is analyzed in terms of a GA's ability to converge to the best solution within an acceptable timeframe. Finally, the paper describes some particular optimized solutions found in the course of this work.

6.
Opt Lett ; 34(24): 3773-5, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20016609

ABSTRACT

A numerical study is presented of several lowest in frequency modes in a spiral microlaser. The modes in an arbitrarily shaped active cavity are considered as solutions to the two-dimensional eigenproblem for the Muller boundary-integral equations. After discretization using the Nyström-type algorithm, the eigenvalues are found in terms of frequency and material-gain threshold.

7.
J Opt Soc Am A Opt Image Sci Vis ; 25(11): 2884-92, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18978871

ABSTRACT

The lasing spectra and threshold values of material gain for the dipole-type supermodes of an active microdisk concentrically coupled with an external passive microring are investigated. TE polarized modes are treated accurately using the linear electromagnetic formalism of the 2-D lasing eigenvalue problem (LEP) with exact boundary and radiation conditions. The influence of the microring on the lasing frequencies and thresholds is studied numerically, demonstrating threshold reduction opportunities. This is explained through the analysis of the mode near-field patterns and the degree of their overlap with the active region, as suggested by the optical theorem applied to the LEP solutions.

8.
Opt Lett ; 31(7): 921-3, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16599212

ABSTRACT

Lasing modes in cyclic photonic molecules (CPMs) composed of several identical thin semiconductor microdisks in free space are studied in a linear approximation. Maxwell's equations with exact boundary conditions and the radiation condition at infinity are considered as a specific eigenvalue problem that enables one to find natural frequencies and threshold gains. It is demonstrated that careful tuning of the distance between the disks in CPMs is able to drastically reduce the lasing thresholds of the whispering-gallery modes having small azimuth indices.

9.
J Opt Soc Am A Opt Image Sci Vis ; 21(3): 393-402, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15005404

ABSTRACT

A fast and accurate method is developed to compute the natural frequencies and scattering characteristics of arbitrary-shape two-dimensional dielectric resonators. The problem is formulated in terms of a uniquely solvable set of second-kind boundary integral equations and discretized by the Galerkin method with angular exponents as global test and trial functions. The log-singular term is extracted from one of the kernels, and closed-form expressions are derived for the main parts of all the integral operators. The resulting discrete scheme has a very high convergence rate. The method is used in the simulation of several optical microcavities for modern dense wavelength-division-multiplexed systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...