Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 26(13): 3319-3332, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32165429

ABSTRACT

PURPOSE: Diffuse intrinsic pontine glioma (DIPG) is an incurable type of pediatric brain cancer, which in the majority of cases is driven by mutations in genes encoding histone 3 (H3K27M). We here determined the preclinical therapeutic potential of combined AXL and HDAC inhibition in these tumors to reverse their mesenchymal, therapy-resistant, phenotype. EXPERIMENTAL DESIGN: We used public databases and patient-derived DIPG cells to identify putative drivers of the mesenchymal transition in these tumors. Patient-derived neurospheres, xenografts, and allografts were used to determine the therapeutic potential of combined AXL/HDAC inhibition for the treatment of DIPG. RESULTS: We identified AXL as a therapeutic target and regulator of the mesenchymal transition in DIPG. Combined AXL and HDAC inhibition had a synergistic and selective antitumor effect on H3K27M DIPG cells. Treatment of DIPG cells with the AXL inhibitor BGB324 and the HDAC inhibitor panobinostat resulted in a decreased expression of mesenchymal and stem cell genes. Moreover, this combination treatment decreased expression of DNA damage repair genes in DIPG cells, strongly sensitizing them to radiation. Pharmacokinetic studies showed that BGB324, like panobinostat, crosses the blood-brain barrier. Consequently, treatment of patient-derived DIPG xenograft and murine DIPG allograft-bearing mice with BGB324 and panobinostat resulted in a synergistic antitumor effect and prolonged survival. CONCLUSIONS: Combined inhibition of AXL and HDACs in DIPG cells results in a synergistic antitumor effect by reversing their mesenchymal, stem cell-like, therapy-resistant phenotype. As such, this treatment combination may serve as part of a future multimodal therapeutic strategy for DIPG.


Subject(s)
Diffuse Intrinsic Pontine Glioma/metabolism , Diffuse Intrinsic Pontine Glioma/pathology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Benzocycloheptenes/pharmacology , Biomarkers, Tumor , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Combined Modality Therapy , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/etiology , Disease Models, Animal , Drug Synergism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Histone Deacetylase Inhibitors/therapeutic use , Humans , Immunohistochemistry , Mice , Protein Kinase Inhibitors/therapeutic use , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
2.
J Nucl Med ; 59(4): 612-615, 2018 04.
Article in English | MEDLINE | ID: mdl-28818988

ABSTRACT

Inadequate tumor uptake of the vascular endothelial growth factor antibody bevacizumab could explain lack of effect in diffuse intrinsic pontine glioma. Methods: By combining data from a PET imaging study using 89Zr-labeled bevacizumab and an autopsy study, a 1-on-1 analysis of multiregional in vivo and ex vivo 89Zr-bevacizumab uptake, tumor histology, and vascular morphology in a diffuse intrinsic pontine glioma patient was performed. Results: In vivo 89Zr-bevacizumab measurements showed heterogeneity between lesions. Additional ex vivo measurements and immunohistochemistry of cervicomedullary metastasis samples showed uptake to be highest in the area with marked microvascular proliferation. In the primary pontine tumor, all samples showed similar vascular morphology. Other histologic features were similar between the samples studied. Conclusion: In vivo 89Zr-bevacizumab PET serves to identify heterogeneous uptake between tumor lesions, whereas subcentimeter intralesional heterogeneity could be identified only by ex vivo measurements. 89Zr-bevacizumab uptake is enhanced by vascular proliferation, although our results suggest it is not the only determinant of intralesional uptake heterogeneity.


Subject(s)
Bevacizumab/metabolism , Bevacizumab/therapeutic use , Brain Stem Neoplasms/blood supply , Brain Stem Neoplasms/metabolism , Microvessels/diagnostic imaging , Microvessels/pathology , Positron-Emission Tomography , Biological Transport , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/drug therapy , Child , Female , Humans , Radioisotopes/therapeutic use , Zirconium/therapeutic use
3.
Exp Cell Res ; 360(2): 397-403, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28947132

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is an aggressive type of brainstem cancer occurring mainly in children, for which there currently is no effective therapy. Current efforts to develop novel therapeutics for this tumor make use of primary cultures of DIPG cells, maintained either as adherent monolayer in serum containing medium, or as neurospheres in serum-free medium. In this manuscript, we demonstrate that the response of DIPG cells to targeted therapies in vitro is mainly determined by the culture conditions. We show that particular culture conditions induce the activation of different receptor tyrosine kinases and signal transduction pathways, as well as major changes in gene expression profiles of DIPG cells in culture. These differences correlate strongly with the observed discrepancies in response to targeted therapies of DIPG cells cultured as either adherent monolayers or neurospheres. With this research, we provide an argument for the concurrent use of both culture conditions to avoid false positive and false negative results due to the chosen method.


Subject(s)
Brain Stem Neoplasms/pathology , Drug Screening Assays, Antitumor/methods , Drug Screening Assays, Antitumor/standards , Glioma/pathology , Molecular Targeted Therapy , Primary Cell Culture/methods , Adolescent , Brain Stem Neoplasms/drug therapy , Cell Line, Tumor , Glioma/drug therapy , Humans , Male , Receptor Protein-Tyrosine Kinases/pharmacology , Receptor Protein-Tyrosine Kinases/therapeutic use , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Treatment Outcome
4.
J Neurosurg Pediatr ; 19(5): 518-530, 2017 May.
Article in English | MEDLINE | ID: mdl-28291423

ABSTRACT

OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic window for treating orthotopic brainstem tumors in mice. For tumors in the thalamus, therapeutic concentrations to slow down tumor growth could be reached. These data suggest that anatomical location determines the severity of toxicity after local delivery of therapeutic agents and that caution should be used when translating data from supratentorial CED studies to treat infratentorial tumors.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Brain Neoplasms/drug therapy , Brain Stem Neoplasms/drug therapy , Doxorubicin/analogs & derivatives , Glioma/drug therapy , Pons , Thalamus , Animals , Antibiotics, Antineoplastic/toxicity , Brain Neoplasms/pathology , Brain Stem Neoplasms/pathology , Cells, Cultured , Child , Convection , Dose-Response Relationship, Drug , Doxorubicin/administration & dosage , Doxorubicin/toxicity , Drug Delivery Systems , Drug Evaluation, Preclinical , Female , Glioma/pathology , Humans , Mice, Nude , Mice, Transgenic , Neoplasm Transplantation , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/toxicity , Pons/drug effects , Pons/pathology , Thalamus/drug effects , Thalamus/pathology
5.
Mol Cancer Ther ; 15(9): 2166-74, 2016 09.
Article in English | MEDLINE | ID: mdl-27325687

ABSTRACT

The role of the VEGF inhibitor bevacizumab in the treatment of diffuse intrinsic pontine glioma (DIPG) is unclear. We aim to study the biodistribution and uptake of zirconium-89 ((89)Zr)-labeled bevacizumab in DIPG mouse models. Human E98-FM, U251-FM glioma cells, and HSJD-DIPG-007-FLUC primary DIPG cells were injected into the subcutis, pons, or striatum of nude mice. Tumor growth was monitored by bioluminescence imaging (BLI) and visualized by MRI. Seventy-two to 96 hours after (89)Zr-bevacizumab injections, mice were imaged by positron emission tomography (PET), and biodistribution was analyzed ex vivo High VEGF expression in human DIPG was confirmed in a publically available mRNA database, but no significant (89)Zr-bevacizumab uptake could be detected in xenografts located in the pons and striatum at an early or late stage of the disease. E98-FM, and to a lesser extent the U251-FM and HSJD-DIPG-007 subcutaneous tumors, showed high accumulation of (89)Zr-bevacizumab. VEGF expression could not be demonstrated in the intracranial tumors by in situ hybridization (ISH) but was clearly present in the perinecrotic regions of subcutaneous E98-FM tumors. The poor uptake of (89)Zr-bevacizumab in xenografts located in the brain suggests that VEGF targeting with bevacizumab has limited efficacy for diffuse infiltrative parts of glial brain tumors in mice. Translating these results to the clinic would imply that treatment with bevacizumab in patients with DIPG is only justified after targeting of VEGF has been demonstrated by (89)Zr-bevacizumab immuno-PET. We aim to confirm this observation in a clinical PET study with patients with DIPG. Mol Cancer Ther; 15(9); 2166-74. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized , Brain Stem Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Positron-Emission Tomography , Angiogenesis Inhibitors/pharmacokinetics , Animals , Antibodies, Monoclonal, Humanized/pharmacokinetics , Bevacizumab , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Humans , Immunohistochemistry , Magnetic Resonance Imaging/methods , Mice , Positron-Emission Tomography/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radioisotopes , Tissue Distribution , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Zirconium
6.
J Neurosci Methods ; 238: 88-94, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25263805

ABSTRACT

BACKGROUND: Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. NEW METHOD: The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. RESULTS: Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. COMPARISON WITH EXISTING METHODS: Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CONCLUSION: CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Stem/drug effects , Carmustine/administration & dosage , Catheters , Convection , Drug Delivery Systems/methods , Animals , Brain Stem/pathology , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/physiopathology , Equipment Design , Ethanol/chemistry , Feasibility Studies , Glioma/drug therapy , Glioma/pathology , Glioma/physiopathology , Glucose/chemistry , Humans , Kaplan-Meier Estimate , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Neoplasm Transplantation , Solvents/chemistry , Treatment Outcome
7.
Acta Neuropathol ; 127(6): 897-909, 2014.
Article in English | MEDLINE | ID: mdl-24777482

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop preclinical models of DIPG, two different methods were adopted: cells obtained at autopsy (1) were directly xenografted orthotopically into the pons of immunodeficient mice without an intervening cell culture step or (2) were first cultured in vitro and, upon successful expansion, injected in vivo. Both strategies resulted in pontine tumors histopathologically similar to the original human DIPG tumors. However, following the direct transplantation method all tumors proved to be composed of murine and not of human cells. This is in contrast to the indirect method that included initial in vitro culture and resulted in xenografts comprising human cells. Of note, direct injection of cells obtained postmortem from the pons and frontal lobe of human brains not affected by cancer did not give rise to neoplasms. The murine pontine tumors exhibited an immunophenotype similar to human DIPG, but were also positive for microglia/macrophage markers, such as CD45, CD68 and CD11b. Serial orthotopic injection of these murine cells results in lethal tumors in recipient mice. Direct injection of human DIPG cells in vivo can give rise to malignant murine tumors. This represents an important caveat for xenotransplantation models of DIPG. In contrast, an initial in vitro culture step can allow establishment of human orthotopic xenografts. The mechanism underlying this phenomenon observed with direct xenotransplantation remains an open question.


Subject(s)
Brain Stem Neoplasms , Disease Models, Animal , Glioma , Neoplasm Transplantation/methods , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/physiopathology , CD11b Antigen/metabolism , Cell Culture Techniques , Child , Female , Frontal Lobe/pathology , Frontal Lobe/physiopathology , Frontal Lobe/transplantation , Glioma/genetics , Glioma/pathology , Glioma/physiopathology , Humans , Infant , Leukocyte Common Antigens/metabolism , Male , Mice, Nude , Mice, SCID , Mice, Transgenic , Pons/pathology , Pons/physiopathology , Pons/transplantation , Young Adult
8.
Am J Physiol Lung Cell Mol Physiol ; 303(1): L75-87, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22582114

ABSTRACT

Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation, arrested lung growth, and pulmonary hypertension (PHT), as observed in human infants with severe bronchopulmonary dysplasia. Inhalation of CO(2) (therapeutic hypercapnia) has been described to limit cytokine production and to have anti-inflammatory effects on the injured lung; we therefore hypothesized that therapeutic hypercapnia would prevent bleomycin-induced lung injury. Spontaneously breathing rat pups were treated with bleomycin (1 mg/kg/d ip) or saline vehicle from postnatal days 1-14 while being continuously exposed to 5% CO(2) (Pa(CO(2)) elevated by 15-20 mmHg), 7% CO(2) (Pa(CO(2)) elevated by 35 mmHg), or normocapnia. Bleomycin-treated animals exposed to 7%, but not 5%, CO(2), had significantly attenuated lung tissue macrophage influx and PHT, as evidenced by normalized pulmonary vascular resistance and right ventricular systolic function, decreased right ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. The level of CO(2) neither prevented increased tissue neutrophil influx nor led to improvements in decreased lung weight, septal thinning, impaired alveolarization, or decreased numbers of peripheral arteries. Bleomycin led to increased expression and content of lung tumor necrosis factor (TNF)-α, which was found to colocalize with tissue macrophages and to be attenuated by exposure to 7% CO(2). Inhibition of TNF-α signaling with the soluble TNF-2 receptor etanercept (0.4 mg/kg ip from days 1-14 on alternate days) prevented bleomycin-induced PHT without decreasing tissue macrophages and, similar to CO(2), had no effect on arrested alveolar development. Our findings are consistent with a preventive effect of therapeutic hypercapnia with 7% CO(2) on bleomycin-induced PHT via attenuation of macrophage-derived TNF-α. Neither tissue macrophages nor TNF-α appeared to contribute to arrested lung development induced by bleomycin. That 7% CO(2) normalized pulmonary vascular resistance and right ventricular function without improving inhibited airway and vascular development suggests that vascular hypoplasia does not contribute significantly to functional changes of PHT in this model.


Subject(s)
Hypercapnia/physiopathology , Hypertension, Pulmonary/prevention & control , Macrophages/metabolism , Pulmonary Alveoli/physiopathology , Pulmonary Artery/physiopathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Animals , Animals, Newborn/metabolism , Animals, Newborn/physiology , Bleomycin/toxicity , Carbon Dioxide/administration & dosage , Carbon Dioxide/blood , Hypercapnia/blood , Hypercapnia/chemically induced , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Lung/metabolism , Lung/physiopathology , Lung Injury/metabolism , Lung Injury/physiopathology , Lung Injury/prevention & control , Neutrophils/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Rats , Ventricular Function, Right/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...