Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Magn Reson Med ; 81(5): 3209-3217, 2019 05.
Article in English | MEDLINE | ID: mdl-30667088

ABSTRACT

PURPOSE: Magnetic resonance imaging of ex vivo cartilage measures parameters such as T2 and magnetization transfer ratio (MTR), which reflect structural changes associated with osteoarthritis. Samples are often immersed in aqueous solutions to prevent dehydration and to to improve susceptibility matching. This study sought to determine the extent to which T2 and MTR changes are attributable to immersion alone and to identify immersion conditions to minimize this confounding factor. METHODS: T2 and MTR were measured before and after immersion for up to 24 hours at 4°C. Bovine nasal and articular cartilage and human articular cartilage were studied. Experimental groups included undisturbed immersion in Fluorinert FC-770, a susceptibility-matched, hydrophobic liquid with minimal tissue penetration, and immersion in Fluorinert, Dulbecco's phosphate-buffered saline (DPBS), or saline, with removal from the magnet between scans. 19 F and 1 H-MRI were used to detect cartilage penetration by Fluorinert and swelling, respectively. RESULTS: Saline and DPBS immersion rapidly increased T2 , wet weight and cartilage volume and decreased MTR, suggesting increased water content for all cartilage types. Fluorinert-immersed samples exhibited minimal changes in T2 or MTR. No ingress of Fluorinert was detected after 2 weeks of continuous immersion at 4°C. CONCLUSION: Ex vivo quantitative MR studies of cartilage may be confounded by the effects of immersion in aqueous solution, which may be comparable to or larger than effects attributed to pathology. These effects may be mitigated by immersion in perfluorocarbon liquids such as Fluorinert FC-770.


Subject(s)
Cartilage/diagnostic imaging , Fluorocarbons/chemistry , Magnetic Resonance Imaging , Osteoarthritis/diagnostic imaging , Algorithms , Animals , Cartilage, Articular/diagnostic imaging , Cattle , Fluorine-19 Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Knee Joint/surgery , Magnetic Resonance Spectroscopy , Magnetics , Nasal Cartilages/diagnostic imaging , Protons
3.
Magn Reson Imaging ; 43: 1-5, 2017 11.
Article in English | MEDLINE | ID: mdl-28645697

ABSTRACT

PURPOSE: We applied our recently introduced Bayesian analytic method to achieve clinically-feasible in-vivo mapping of the proteoglycan water fraction (PgWF) of human knee cartilage with improved spatial resolution and stability as compared to existing methods. MATERIALS AND METHODS: Multicomponent driven equilibrium single-pulse observation of T1 and T2 (mcDESPOT) datasets were acquired from the knees of two healthy young subjects and one older subject with previous knee injury. Each dataset was processed using Bayesian Monte Carlo (BMC) analysis incorporating a two-component tissue model. We assessed the performance and reproducibility of BMC and of the conventional analysis of stochastic region contraction (SRC) in the estimation of PgWF. Stability of the BMC analysis of PgWF was tested by comparing independent high-resolution (HR) datasets from each of the two young subjects. RESULTS: Unlike SRC, the BMC-derived maps from the two HR datasets were essentially identical. Furthermore, SRC maps showed substantial random variation in estimated PgWF, and mean values that differed from those obtained using BMC. In addition, PgWF maps derived from conventional low-resolution (LR) datasets exhibited partial volume and magnetic susceptibility effects. These artifacts were absent in HR PgWF images. Finally, our analysis showed regional variation in PgWF estimates, and substantially higher values in the younger subjects as compared to the older subject. CONCLUSIONS: BMC-mcDESPOT permits HR in-vivo mapping of PgWF in human knee cartilage in a clinically-feasible acquisition time. HR mapping reduces the impact of partial volume and magnetic susceptibility artifacts compared to LR mapping. Finally, BMC-mcDESPOT demonstrated excellent reproducibility in the determination of PgWF.


Subject(s)
Cartilage, Articular/diagnostic imaging , Knee Injuries/diagnostic imaging , Knee Joint/diagnostic imaging , Proteoglycans/chemistry , Adult , Aged, 80 and over , Bayes Theorem , Humans , Image Processing, Computer-Assisted , Knee , Magnetic Resonance Imaging , Male , Monte Carlo Method , Reproducibility of Results , Stochastic Processes , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...