Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci ; 37(5): 829-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23107919

ABSTRACT

Advances in DNA sequencing provide tools for efficient large-scale discovery of markers for use in plants. Discovery options include large-scale amplicon sequencing, transcriptome sequencing, gene-enriched genome sequencing and whole genome sequencing. Examples of each of these approaches and their potential to generate molecular markers for specific applications have been described. Sequencing the whole genome of parents identifies all the polymorphisms available for analysis in their progeny. Sequencing PCR amplicons of sets of candidate genes from DNA bulks can be used to define the available variation in these genes that might be exploited in a population or germplasm collection. Sequencing of the transcriptomes of genotypes varying for the trait of interest may identify genes with patterns of expression that could explain the phenotypic variation. Sequencing genomic DNA enriched for genes by hybridization with probes for all or some of the known genes simplifies sequencing and analysis of differences in gene sequences between large numbers of genotypes and genes especially when working with complex genomes. Examples of application of the above-mentioned techniques have been described.


Subject(s)
Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Plants, Edible/genetics , Polymorphism, Single Nucleotide , Breeding , Contig Mapping , Epigenesis, Genetic , Gene Expression , Genetic Markers , Genomic Library , Genotype , Hybridization, Genetic , Phenotype , Quantitative Trait Loci , Selection, Genetic
2.
Plant Physiol ; 158(1): 531-41, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22052017

ABSTRACT

This association study of Eucalyptus pilularis populations provides empirical evidence for the role of Pectin Methylesterase (PME) in influencing solid wood characteristics of Eucalyptus. PME6 was primarily associated with the shrinkage and collapse of drying timber, which are phenotypic traits consistent with the role of pectin as a hydrophilic polysaccharide. PME7 was primarily associated with cellulose and pulp yield traits and had an inverse correlation with lignin content. Selection of specific alleles in these genes may be important for improving trees as sources of high-quality wood products. A heterozygote advantage was postulated for the PME7 loci and, in combination with haplotype blocks, may explain the absence of a homozygous class at all single-nucleotide polymorphisms investigated in this gene.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Eucalyptus/chemistry , Eucalyptus/genetics , Polymorphism, Single Nucleotide , Wood/genetics , Cellulose/chemistry , Cellulose/genetics , Genetics, Population , Haplotypes/genetics , Heterozygote , Lignin/metabolism , Principal Component Analysis , Quantitative Trait Loci , Wood/chemistry
3.
Am J Bot ; 94(10): 1670-6, 2007 Oct.
Article in English | MEDLINE | ID: mdl-21636363

ABSTRACT

Zamioculcas zamiifolia (Araceae), a terrestrial East African aroid, with two defining attributes of crassulacean acid metabolism (CAM) (net CO(2) uptake in the dark and diel fluctuations of titratable acidity) is the only CAM plant described within the Araceae, a mainly tropical taxon that contains the second largest number of epiphytes of any vascular plant family. Within the Alismatales, the order to which the Araceae belong, Z. zamiifolia is the only documented nonaquatic CAM species. Zamioculcas zamiifolia has weak CAM that is upregulated in response to water stress. In well-watered plants, day-night fluctuations in titratable acidity were 2.5 µmol H(+)·(g fresh mass)(-1), and net CO(2) uptake in the dark contributed less than 1% to daily carbon gain. Following 10 d of water stress, net CO(2) uptake in the light fell 94% and net CO(2) uptake in the dark increased 7.5-fold, such that its contribution increased to 19% of daily carbon gain. Following rewatering, dark CO(2) uptake returned to within 5% of prestressed levels. We postulate that CAM assists survival of Z. zamiifolia by reducing water loss and maintaining carbon gain during seasonal droughts characteristic of its natural habitat.

SELECTION OF CITATIONS
SEARCH DETAIL
...