Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(46): 14132-7, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578756

ABSTRACT

River networks exhibit a complex ramified structure that has inspired decades of studies. However, an understanding of the propagation of a single stream remains elusive. Here we invoke a criterion for path selection from fracture mechanics and apply it to the growth of streams in a diffusion field. We show that, as it cuts through the landscape, a stream maintains a symmetric groundwater flow around its tip. The local flow conditions therefore determine the growth of the drainage network. We use this principle to reconstruct the history of a network and to find a growth law associated with it. Our results show that the deterministic growth of a single channel based on its local environment can be used to characterize the structure of river networks.

2.
Proc Natl Acad Sci U S A ; 109(51): 20832-6, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23223562

ABSTRACT

The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification--the mechanism of branching by which such networks grow--remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2π/5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km(2) groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.


Subject(s)
Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Rivers , Environmental Monitoring/methods , Florida , Geography , Models, Statistical , Models, Theoretical , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...