Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(9): e30289, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711634

ABSTRACT

This research paper details the creation of innovative nanocomposites using the sol-gel technique, incorporating polyoxometalates SiW9Ba3 to stabilize ceramic particles of strontium ferrite (SrFe12O19) polymer and Chitosan (CS). The identification and confirmation of the nanocomposites obtained at each stage were carried out through the use of FT-IR, EDX, XRD, and FESEM analyses. To evaluate their ability to remove organic dyes, we analyzed the catalytic activity of these nanocomposites during photocatalytic detoxification procedures. With its exceptional photocatalytic properties, the nanocomposite (SiW9Ba3@SrFe12O19@Cs) was able to remove estamipride poison at an impressive rate of 85 % and xylene dye solution at an even higher rate of 98 %. In addition, an extensive examination was undertaken to explore the primary variables that influence process efficiency. The study suggests that ceramic nanocomposites incorporating heteropolyoxometalate may offer a viable approach to effectively eradicate pollutants from the environment.

2.
Chemosphere ; 352: 141526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401863

ABSTRACT

Reducing irreversible fouling in polymer membranes by integrating photocatalytic and membrane processes as the self-cleaning photocatalytic membrane is a promising candidate for improving membrane filtration performance. In this study, mixed matrix photocatalytic membranes were prepared from the combination of different morphologies ZnO-g-C3N4 heterostructure in the polymer matrix by the phase-separation method. To investigate the self-cleaning and performance properties of mixed matrix photocatalytic membranes prepared from different morphologies heterostructures, the photocatalytic membrane reactor with a visible-light source was applied. Nanoflower/nanosheet (NF/NS) ZnO-g-C3N4 photocatalytic membrane showed good self-cleaning performance owing to the high photocatalytic performance of NF/NS ZnO-g-C3N4 heterostructure by the reduction of irreversible membrane fouling, thus improving the antifouling and filtration performance of the membrane. Also, the morphology and the uniform distribution of the NF/NS ZnO-g-C3N4 heterostructure in the membrane matrix caused good hydrophilic properties, high porosity, and a more symmetrical structure in the (NF/NS) ZnO-g-C3N4 photocatalytic membrane (F4). For the F4 membrane, the permeability and rejection values increased from 40.35 L m-2 h-1 and 90.9% in the dark environment to 84.37 L m-2 h-1 and 97.4% under visible-light for dye pollutants. Accordingly, F4 had the best filtration and self-cleaning performance, which can be used as a promising visible-light photocatalytic membrane in wastewater treatment processes.


Subject(s)
Environmental Pollutants , Zinc Oxide , Membranes , Filtration , Polymers
3.
Sci Rep ; 13(1): 15079, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699970

ABSTRACT

As a non-metallic organic semiconductor, graphitic carbon nitride (g-C3N4) has received much attention due to its unique physicochemical properties. However, the photocatalytic activity of this semiconductor faces challenges due to factors such as low electronic conductivity and limited active sites provided on its surface. The morphology and structure of g-C3N4, including macro/micro morphology, crystal structure and electronic structure can affect its catalytic activity. Non-metallic heteroatom doping is considered as an effective method to tune the optical, electronic and other physicochemical properties of g-C3N4. Here, we synthesized non-metal-doped highly crystalline g-C3N4 by one-pot calcination method, which enhanced the photocatalytic activity of g-C3N4 such as mesoporous nature, reduced band gap, wide-range photousability, improved charge carrier recombination, and the electrical conductivity was improved. Hence, the use of low-power white-LED-light illumination (λ ≥ 420 nm) and ultrasound (US) irradiation synergistically engendered the Methylene Blue (MB) mineralization efficiency elevated to 100% within 120 min by following the pseudo-first-order mechanism under the following condition (i.e., pH 11, 0.75 g L-1 of O-doped g-C3N4 and S-doped g-C3N4, 20 mg L-1 MB, 0.25 ml s-1 O2, and spontaneous raising temperature). In addition, the rapid removal of MB by sonophotocatalysis was 4 times higher than that of primary photocatalysis. And radical scavenging experiments showed that the maximum distribution of active species corresponds to superoxide radical [Formula: see text]. More importantly, the sonophotocatalytic degradation ability of O-doped g-C3N4 and S-doped g-C3N4 was remarkably sustained even after the sixth consecutive run.

4.
Sci Rep ; 12(1): 16908, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207417

ABSTRACT

The membrane modules of the water treatment system are faced costly damages; thereby executing pre-desalination units based on Nanofiltration (NF) could prevent these suffers, and improve the permeated water flux (PWF) and salt rejection (SR). Hence, we focused on the construction of a novel ternary-layer NF membrane through "electrospinning Polyvinylidene Fluoride (PVDF) (as bottom layer)", "generating middle layer by electrospinning PVDF along with, the implementation cross-linking after electrospraying Sodium Alginate", and "synthesizing Polyamide (as top layer) through interfacial polymerization". More importantly, it anticipated that the Taguchi statistical method can expeditiously optimize the effects of Graphene Oxide nano-sheets (GOns) on water-dependent properties, such as PWF and SR. Astonishingly, the desalination capabilities significantly improved, when the top, middle, and bottom layers simultaneously had 1, 0.1, and 0.1 wt.% of GOns, respectively. Overall, comparing the performances between the optimized sample containing low-dosage and without GOns demonstrated the PWF ameliorated from 6.68 to 20.36 L/m2 h; also, the SR ability remained on an incremental basis as NaCl < MgCl2 < MgSO4 under 6 bar pressure. Manifestly, these authentic results denoted promising, innovative, and large-scaling insights when effectual PWF and SR be necessary.

5.
Eur J Pharm Sci ; 174: 106191, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35430382

ABSTRACT

In spite of quercetin advantages, its utilization as a cancer drug is confined due to its very low water solubility and bioavailability. Accordingly, we prepared a biodegradable starch-based hydrogel, using a new technique to control and improve quercetin release and bioavailability. For this purpose, the molecular structure of starch was modified by polyethylene glycol/acrylate and Fe3O4 nanoparticles were used to enhance mechanical properties of hydrogel. In order to prepare the final hydrogel drug carrier, the modified starch was directly mixed with quercetin and other additives in different ratios and cured under blue light. Synthesis confirmation and structural properties of the modified starch, silanized and pure Fe3O4 nanoparticles and final hydrogel were studied using 1H NMR, FT-IR, SEM, XRD, TGA, VSM and DLS analyses. We improved in vitro drug release to 56.62%, while the maximum release of quercetin from the starch-based hydrogel in our previous study was only 27% (Doosti et al., 2019).


Subject(s)
Hydrogels , Starch , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Hydrogels/chemistry , Quercetin/chemistry , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Water
6.
Chemosphere ; 295: 133917, 2022 May.
Article in English | MEDLINE | ID: mdl-35157881

ABSTRACT

In this research, insertion of Gd ions (2 wt%) into the crystalline lattice of the ZnS QDs enhanced the photocatalytic activity of the QDs. In addition, the influence of graphene oxide (GO) and graphitic carbon nitride (g-C3N4) was assessed on the photocatalytic activity of the ZnS QDs through degradation of acid red 14 (AR14) and bisphenol-A (BA) under visible light. Higher photocatalytic degradation efficiency (97.1% for AR14 and 67.4% for BA within 180 min) and higher total organic carbon (TOC) removal (67.1% for AR14 and 59.2% for BA within 5 h) was achieved in the presence of ZnS QDs/g-C3N4 compared with ZnS QDs/GO nanocomposite. Finally, the Gd-doped ZnS QDs were hybridized with g-C3N4 as optimal support to fabricate a potent visible-light-driven photocatalyst for the decomposition of organic contaminants. The maximum photocatalytic degradation of 99.1% and 80.5% were achieved for AR14 and BA, respectively, in the presence of Gd-doped ZnS QDs/g-C3N4 nanocomposite. The photosensitization mechanism was suggested for the improved photocatalytic activity of the ZnS QDs/GO, ZnS QDs/g-C3N4, and Gd-doped ZnS QDs/g-C3N4 nanocomposites under visible light.


Subject(s)
Lanthanoid Series Elements , Azo Compounds , Catalysis , Graphite , Light , Sulfides , Zinc Compounds
7.
Sci Rep ; 11(1): 20789, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675289

ABSTRACT

Here, core-shell impact modifier particles (CSIMPs) and multiwalled carbon nanotubes (MWCNs) were used as reinforcing agents for improving the toughness and tensile properties of epoxy resin. For this purpose, emulsion polymerization technique was exploited to fabricate poly(butyl acrylate-allyl methacrylate) core-poly(methyl methacrylate-glycidyl methacrylate) shell impact modifier particles with an average particle size of 407 nm. It was revealed that using a combination of the prepared CSIMPs and MWCNTs could significantly enhance the toughness and tensile properties of the epoxy resin. Also, it was observed that the dominant factors for improving the fracture toughness of the ternary composites are crack deflection/arresting as well as enlarged plastic deformation around the growing crack tip induced by the combination of rigid and soft particles. The Response Surface Methodology (RSM) with central composite design (CCD) was utilized to study the effects of the amounts of CSIMPs and MWCNTs on the physicomechanical properties of the epoxy resin. The proposed quadratic models were in accordance with the experimental results with correlation coefficient more than 98%. The optimum condition for maximum toughness, elastic modulus, and tensile strength was 3 wt% MWCNT and 1.03 wt% CSIMPs. The sample fabricated in the optimal condition indicated toughness, elastic modulus, and tensile strength equal to 2.2 MPa m1/2, 3014.5 MPa, and 40.6 MPa, respectively.

8.
Sci Rep ; 11(1): 19339, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34588525

ABSTRACT

In recent decades, to reduce electromagnetic pollution, scientists focus on finding new microwave absorbers with effective performance, thin thickness, and broad bandwidth. In this work, the nanoparticles of NiFe2O4, X-doped g-C3N4 (M = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) were successfully synthesized using co-precipitation, specific heat program, and semi-wet sol-gel methods, respectively. The synthesized nanoparticles were utilized as absorption agents and polyester resin as the matrix. Morphology, particle size, crystal structure, and chemical composition of the prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and energy dispersive X-Ray analysis (EDX), respectively. The microwave absorption performance of the coatings was also investigated by a vector network analyzer (VNA). Moreover, the effect of different parameters on the performance of absorbent coatings was studied by the Taguchi method and optimized to achieve an optimal absorbent. The results showed that the optimal nanocomposite has the reflectance loss (RL) less than - 30 dB (equal to absorption > 99%) at a high-frequency range (8-12 GHz) and 1 mm thickness. Furthermore, the addition of such novel nanoparticles to absorbents resulted in high values of attenuation constant (more than 200 dB/m) at the X-band. Therefore, the polyester coating filled with ZnTiO3, O-doped g-C3N4, and NiFe2O4 nanofillers can be considered a high-efficiency and low-density absorber.

9.
Int J Biol Macromol ; 177: 157-165, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33609576

ABSTRACT

Although therapeutic effect of quercetin (Quer) was reported on non-alcoholic fatty liver disease (NAFLD), destructive effects have been shown on male fertility due to its pro-oxidative properties. On the other hand, NAFLD impairs germ cells to produce sperm and leads to male infertility. Herein, a biocompatible and green bigel was designed for Quer delivery to prevent infertility induced by NAFLD as the increasing complications. Bigels were prepared using cottonseed oil/cannabis oil/alginate/ferula gum and optimized by the mixture design method. NAFLD was induced by 58% of dietary calorie as lard and 42 g/l fructose for 16 weeks in Sprague-Dawley rats. So on animals received 2 mg/kg Quer loaded on bigels, free bigels, or free Quer for 45 days as daily gavage. Semen was analyzed, followed by the assessment of DNA integrity. Count, motility, and normal morphology reached the healthy control group at the bigel-Quer-treated one. Moreover, all of these parameters were significantly higher in the bigel-Quer group than the Quer and bigel, alone. The percent of sperms with head and tail abnormality decreased considerably in the bigel-Quer group compared with the Quer, free bigel, and NAFLD groups. Serum testosterone levels significantly increased and reached the healthy control group in the bigel-Quer group. DNA fragmentation of sperm significantly decreased in the bigel-Quer group (p < 0.05). The bigel showed synergistic effects with Quer for treating infertility in rats with NAFLD.


Subject(s)
Alginates/chemistry , Cannabis/chemistry , Cottonseed Oil/chemistry , Ferula/chemistry , Gels/chemical synthesis , Gels/pharmacology , Infertility, Male/drug therapy , Quercetin/pharmacology , Animals , Antioxidants/chemistry , Drug Delivery Systems/methods , Male , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Quercetin/chemistry , Rats , Rats, Sprague-Dawley
10.
Colloids Surf B Biointerfaces ; 183: 110487, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31518957

ABSTRACT

Application of Quercetin (Quer) as a natural flavonoid is confined because of limited solubility in water and stability in the body. Herein, we prepared a biodegradable super paramagnetic starch-based hydrogel grafted onto fumaric acid for increasing Quer bioavailability and controlling its release. The molecular structure of starch was modified by using fumaric acid to increase hydrophilicity of hydrogel, and iron oxide nanoparticles is used to strengthen its physical and mechanical properties. The structural, morphological and magnetic properties of the optimized hydrogel were characterized. Application of the synthesized hydrogel was assessed in the in vitro and in vivo studies. In vitro release curve was nicely fitted to the Higuchi model. Stability and bioavailability of Quer were significantly increased at the plasma and liver of rats which received 100 mg kg-1 Quer- loaded on synthetic hydrogel compared with 100 mg kg-1 free Quer (p < 0.05).


Subject(s)
Fumarates/chemistry , Hydrogels/chemistry , Quercetin/pharmacokinetics , Starch/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Biological Availability , Drug Carriers , Drug Liberation , Magnetic Phenomena , Male , Microscopy, Electron, Scanning , Quercetin/chemistry , Rats, Wistar , Solubility
11.
J Chromatogr A ; 1420: 46-53, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26477522

ABSTRACT

In this paper, TiO2 nanowires and TiO2 nanoparticles have been successfully anchored on graphene oxide (GO) nanosheets by a facile one-step hydrothermal method. The synthesized TiO2 NWs/RGO and TiO2 NPs/RGO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. After comparatively studying of the as-made nanocomposites, TiO2 NWs/RGO nanocomposite showed the best adsorbing performance and applied as an attractive efficient sorbent reinforced with microporous hollow fiber membrane through the sol-gel technology. In the following, the selected nanocomposite was utilized for simultaneous preconcentration and determination of clotrimazole and tylosin using high performance liquid chromatography (HPLC)-UV detection, respectively. In order to optimize the extraction conditions through affecting parameters (pH, stirring rate, salt addition, extraction time and volume of donor phase), response surface methodology (RSM) was employed as a powerful statistical technique. Under the optimal conditions, the limit of detection (S/N=3) of proposed HFSPME method, was 0.67 µg L(-1) for clotrimazole and 0.91 µg L(-1) for tylosin with good linear ranges of 1.7-8000.0 µg L(-1) and 4.0-6000.0 µg L(-1). The inter-day and intra-day relative standard deviations (RSD%) at 100 µg L(-1) concentration level were in the ranges of 2.10-3.58% for clotrimazole and 3.45-7.80% for tylosin (n=5), respectively. The proposed microextraction device was extended for determination of ultra trace amounts of target analytes in milk and urine samples with satisfactory results.


Subject(s)
Clotrimazole/isolation & purification , Graphite/chemistry , Milk/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Titanium/chemistry , Tylosin/isolation & purification , Animals , Cattle , Chromatography, High Pressure Liquid/methods , Clotrimazole/analysis , Membranes, Artificial , Microscopy, Electron, Scanning , Tylosin/analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL