Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678606

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of liver disease. Orthosiphon aristatus (Blume) Miq, a traditional plant in South Asia, has previously been shown to attenuate obesity and hyperglycaemic conditions. Eight weeks of feeding C57BL/6 mice with the standardized O. aristatus extract (400 mg/kg) inhibited the progression of NAFLD. Liver enzymes including alanine aminotransferase and aspartate transaminase were significantly reduced in treated mice by 74.2% ± 7.69 and 52.8% ± 7.83, respectively. Furthermore, the treated mice showed a reduction in serum levels of glucose (50% ± 5.71), insulin (70.2% ± 12.09), total cholesterol (27.5% ± 15.93), triglycerides (63.2% ± 16.5), low-density lipoprotein (62.5% ± 4.93) and atherogenic risk index relative to the negative control. Histologically, O. aristatus reversed hepatic fat accumulation and reduced NAFLD severity. Notably, our results showed the antioxidant activity of O. aristatus via increased superoxide dismutase activity and a reduction of hepatic malondialdehyde levels. In addition, the levels of serum pro-inflammatory mediators (IL-6 and TNFα) decreased, indicating anti-inflammatory activity. The aqueous, hydroethanolic and ethanolic fractions of O. aristatus extract significantly reduced intracellular fat accumulation in HepG2 cells that were treated with palmitic-oleic acid. Together, these findings suggest that antioxidant activities are the primary mechanism of action of O. aristatus underlying the anti-NAFLD effects.

2.
J Ethnopharmacol ; 262: 113187, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32730892

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Khat (Catha edulis (Vahl) Forssk.) is a herb from the Celastraceae family (also known as qat, gaad, or mirra) that is widely-consumed in East Africa and in the Arabian peninsula. The green leaves and small stems are consumed primarily at recreational and social gatherings, and medicinally for their antidiabetic and appetite-suppression effects. AIMS: The objectives of this study were to determine the effects of khat and its active alkaloid, cathinone, on food intake and body weight in mice maintained on a high-fat diet, and to investigate its mechanism of action in white adipose tissue and in the hypothalamus. MATERIALS & METHOD: Adult male mice (C57BL/6J) were fed a high fat diet (HFD) for 8 weeks (n = 30), then divided into 5 groups and treated daily for a further 8 weeks with HFD + vehicle [control (HFD)], HFD + 15 mg/kg orlistat (HFDO), HFD + 200 mg/kg khat extract (HFDK200), HFD + 400 mg/kg khat extract (HFDK400) and HFD + 3.2 mg/kg cathinone (HFDCAT). Treatments were carried out once daily by gastric gavage. Blood and tissue samples were collected for biochemical, hormonal and gene expression analyses. RESULTS: Khat extracts and orlistat treatment significantly reduced weight gain as compared to control mice on HFD, and cathinone administration completely prevented weight gain in mice fed on HFD. Khat treatment caused a marked reduction in body fat and in serum triglycerides. A dose-dependent effect of khat was observed in reducing serum leptin concentrations. Analysis of gene expression in adipose tissue revealed a significant upregulation of two lipolysis pathway genes:(adipose triglyceride lipase (PNPLA-2) and hormone-sensitive lipase (LIPE). In the hypothalamic there was a significant (P < 0.05) upregulation of agouti-related peptide (AgRP) and cocaine-amphetamine regulated transcript (CART) genes in the HFDK400 and HFDCAT groups. CONCLUSION: Cathinone treatment blocked body weight gain, while high dose khat extract significantly reduced the weight gain of mice on an obesogenic diet through stimulation of lipolysis in white adipose tissue.


Subject(s)
Adipose Tissue, White/drug effects , Catha , Diet, High-Fat/adverse effects , Lipolysis/drug effects , Obesity/genetics , Plant Extracts/therapeutic use , Adipose Tissue, White/metabolism , Animals , Body Weight/drug effects , Body Weight/physiology , Eating/drug effects , Eating/genetics , Lipolysis/physiology , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Up-Regulation/drug effects , Up-Regulation/physiology
3.
Article in English | MEDLINE | ID: mdl-32173393

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the chemopreventive activity of Malaysian jungle Tualang honey (TH) after oral carcinogenesis induced with 4-nitroquinoline 1-oxide (4 NQO). STUDY DESIGN: A total of 28 male Sprague-Dawley (SD) rats were distributed into 4 groups as follows: group 1 (nontreated group); group 2 (control), which received 4 NQO during 8 weeks in drinking water only; and groups 3 and 4, which received 4 NQO for 8 weeks in drinking water and treated with TH 1000 mg/kg and 2000 mg/kg by oral gavage for 10 weeks. All rats from all experiments were sacrificed after 22 weeks, and the incidence of oral neoplasms and histopathologic changes were microscopically evaluated. Moreover, immunohistochemical expression was analyzed in tongue specimens by using image analysis software. The expression of particular genes associated with oral cancer were assessed by using RT2 Profiler PCR Array (Qiagen, Germantown, MD). RESULTS: TH significantly reduced the incidence of oral squamous cell carcinoma (OSCC) and suppressed cancer cell proliferation via diminishing the expression of CCND1, EGFR, and COX-2. Furthermore, TH preserved cellular adhesion (epithelial polarity) through overexpression of ß-catenin and e-cadherin and inhibited the OSCC aggressiveness by downregulating TWIST1 and RAC1. CONCLUSIONS: Our data suggest that TH exerts chemopreventive activity in an animal model in which oral cancer was induced by using 4 NQO.


Subject(s)
Carcinoma, Squamous Cell , Honey , Mouth Neoplasms , Tongue Neoplasms , Animals , Male , Rats , Rats, Sprague-Dawley
4.
Life Sci ; 232: 116633, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31278947

ABSTRACT

AIMS: The compound 8-prenylnaringenin (8-PN) is a prenylflavonoid that can be isolated from hops and beer and has anti-cancer properties against breast cancer. The aim of this study is to investigate the anti-proliferative and apoptotic activities of 8-PN against human colon cancer HCT-116 cells. MAIN METHODS: Colon cancer HCT-116 cells were treated with 8-PN and subjected to MTT and acridine orange/propidium iodide (AO/PI) staining to investigate the cytotoxicity of 8-PN. Arrest of the cells at different phases of cell cycle was monitored in the presence of 8-PN. Moreover, the apoptotic effects of 8-PN was assessed via annexin V and caspase activity assays and compared to the untreated cells. KEY FINDINGS: The findings showed that 8-PN revealed strong inhibitory effect against HCT-116 cells with an IC50 value of 23.83 ±â€¯2.9 µg/ml after 48 h. However, at similar concentrations and experimental time-points, the compound did not show cytotoxic effect to non-cancerous colon cells (CCD-41). Annexin-V assay indicates that 38.5% and 14.4% of HCT-116 cells had entered early and late stages of apoptosis, respectively after exposure of the cells to 8-PN for 48 h. Caspase activity assay illustrates that apoptosis is activated through both intrinsic and extrinsic pathways. Moreover, flow cytometry cell cycle results indicate that treatment with 8-PN significantly arrested the HCT-116 cells at G0/G1 phase. SIGNIFICANCE: These findings reveal that 8-PN has anti-proliferative activity against HCT-116 colon cancer cells via induction of intrinsic and extrinsic pathway-mediated apoptosis. Further investigations should be carried out to unravel the mechanistic pathways underlying these activities.


Subject(s)
Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Flavanones/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , HCT116 Cells/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects
5.
J Ethnopharmacol ; 236: 173-182, 2019 May 23.
Article in English | MEDLINE | ID: mdl-30851371

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cynometra cauliflora Linn. belongs to the Fabaceae family and is known locally in Malaysia as nam-nam. Traditionally, a decoction of the C. cauliflora leaves is used for treating hyperlipidemia and diabetes. AIM OF THE STUDY: This study aims to investigate the anti-obesity and lipid lowering effects of ethanolic extract of C. cauliflora leaves and its major compound (vitexin) in C57BL/6 obese mice induced by high-fat diet (HFD), as well as to further identify the molecular mechanism underlying this action. METHODS AND MATERIAL: Male C57BL/6 mice were fed with HFD (60% fat) for 16 weeks to become obese. The treatment started during the last 8 weeks of HFD feeding and the obese mice were treated with C. cauliflora leaf extract at 200 and 400 mg/kg/day, orlistat (10 mg/kg) and vitexin (10 mg/kg). RESULTS: The oral administration of C. cauliflora (400 and 200 mg/kg) and vitexin significantly reduced body weight, adipose tissue and liver weight and lipid accumulation in the liver compared to control HFD group. Both doses of C. cauliflora also significantly (P ≤ 0.05) decreased serum triglyceride, LDL, lipase, IL-6, peptide YY, resistin levels, hyperglycemia, hyperinsulinemia, and hyperleptinemia compared to the control HFD group. Moreover, C. cauliflora significantly up-regulated the expression of adiponectin, Glut4, Mtor, IRS-1 and InsR genes, and significantly decreased the expression of Lepr in white adipose tissue. Furthermore, C. cauliflora significantly up-regulated the expression of hypothalamus Glut4, Mtor and NF-kB genes. GC-MS analysis of C. cauliflora leaves detected the presence of phytol, vitamin E and ß-sitosterol. Besides, the phytochemical evaluation of C. cauliflora leaves showed the presence of flavonoid, saponin and phenolic compounds. CONCLUSION: This study shows interesting outcomes of C. cauliflora against HFD-induced obesity and associated metabolic abnormalities. Therefore, the C. cauliflora extract could be a potentially effective agent for obesity management and its related metabolic disorders such as insulin resistance and hyperlipidemia.


Subject(s)
Anti-Obesity Agents/therapeutic use , Diet, High-Fat/adverse effects , Fabaceae/chemistry , Lipid Metabolism/drug effects , Obesity/drug therapy , Plant Extracts/therapeutic use , Administration, Oral , Animals , Anti-Obesity Agents/isolation & purification , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cytokines/blood , Liver/drug effects , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/metabolism , Plant Extracts/isolation & purification , Triglycerides/blood
6.
Planta Med ; 83(8): 684-692, 2017 May.
Article in English | MEDLINE | ID: mdl-27992939

ABSTRACT

The present study investigated the antiobesity and lipid lowering effects of an ethanolic extract of leaves obtained from Orthosiphon stamineus (200 and 400 mg/kg) and its major compound (rosmarinic acid, 10 mg/kg) in obese mice (C57BL/6) induced by a high-fat diet. Continuous supplementation with O. stamineus extract (200 and 400 mg/kg) for 8 weeks significantly decreased body weight gain (p < 0.05). However, supplementation with rosmarinic acid, a constituent in the extract, produced only a slight reduction in body weight gain compared to the high-fat diet control group. Food intake between the treatment and the high-fat diet groups was similar, which suggested that the plant extract did not suppress food intake. Further, body weight reduction of the treatment groups was not due to a decreased reduction in energy intake. Compared to the high-fat diet-fed group, serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels were significantly reduced in the treated groups, while high-density lipoprotein cholesterol levels were not significantly altered. Accumulation of hepatic lipid droplets induced by a high-fat diet was markedly inhibited by O. stamineus extract. In addition, O. stamineus significantly diminished liver malondialdehyde production, and significantly elevated the activities of hepatic superoxidase dismutase. The present study showed that an ethanolic extract prepared from the leaves of O. stamineus can significantly reduce a gain in body weight, enhance antioxidant activity, and possess hypolipidemic and antiobesity effects, thereby protecting against the adverse effects of high-fat diet-induced obesity.


Subject(s)
Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Orthosiphon/chemistry , Phytotherapy , Plant Extracts/therapeutic use , Adiponectin/blood , Animals , Antioxidants/metabolism , Cinnamates/therapeutic use , Depsides/therapeutic use , Diet, High-Fat , Insulin/blood , Lipid Peroxidation , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Rosmarinic Acid
7.
Ann Nutr Metab ; 69(3-4): 200-211, 2016.
Article in English | MEDLINE | ID: mdl-27871070

ABSTRACT

BACKGROUND: Khat (Catha edulis) is a plant that is deeply rooted in the cultural life of East African and Southwestern Arabian populations. Prevalent traditional beliefs about khat are that the plant has an effect on appetite and body weight. SUMMARY: This review assesses the accumulated evidences on the mutual influence of monoamines, hormones and neuropeptides that are linked to obesity. A few anti-obesity drugs that exert their mechanisms of action through monoamines are briefly discussed to support the notion of monoamines being a critical target of drug discovery for new anti-obesity drugs. Subsequently, the review provides a comprehensive overview of central dopamine and serotonin changes that are associated with the use of khat or its alkaloids. Then, all the studies on khat that describe physical, biochemical and hormonal changes are summarised and discussed in depth. CONCLUSION: The reviewed studies provide relatively acceptable evidence that different khat extracts or cathinone produces changes in terms of weight, fat mass, appetite, lipid biochemistry and hormonal levels. These changes are more pronounced at higher doses and long durations of intervention. The most suggested mechanism of these changes is the central action that produces changes in the physiology of dopamine and serotonin. Nonetheless, there are a number of variations in the study design, including species, doses and durations of intervention, which makes it difficult to arrive at a final conclusion about khat regarding obesity, and further studies are necessary in the future to overcome these limitations.


Subject(s)
Appetite/drug effects , Catha , Plant Extracts/pharmacology , Animals , Humans , Models, Animal , Plant Stems
8.
Int J Med Sci ; 13(5): 374-85, 2016.
Article in English | MEDLINE | ID: mdl-27226778

ABSTRACT

Colorectal cancer (CRC) is the third most common type of cancer in the world, causing thousands of deaths annually. Although chemotherapy is known to be an effective treatment to combat colon cancer, it produces severe side effects. Natural products, on the other hand, appear to generate fewer side effects than do chemotherapeutic drugs. Flavonoids are polyphenolic compounds found in various fruits and vegetables known to possess antioxidant activities, and the literature shows that several of these flavonoids have anti-CRC propertiesFlavonoids are classified into five main subclasses: flavonols, flavanones, flavones, flavan-3-ols, and flavanonols. Of these subclasses, the flavanonols have a minimum effect against CRC, whereas the flavones play an important role. The main targets for the inhibitory effect of flavonoids on CRC signaling pathways are caspase; nuclear factor kappa B; mitogen-activated protein kinase/p38; matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9; p53; ß-catenin; cyclin-dependent kinase (CDK)2 and CDK4; and cyclins A, B, D, and E. In this review article, we summarize the in vitro and in vivo studies that have been performed since 2000 on the anti-CRC properties of flavonoids. We also describe the signaling pathways affected by flavonoids that have been found to be involved in CRC. Some flavonoids have the potential to be an effective alternative to chemotherapeutic drugs in the treatment of colon cancer; well-controlled clinical studies should, however, be conducted to support this proposal.


Subject(s)
Colorectal Neoplasms/drug therapy , Flavonoids/pharmacology , Flavonoids/therapeutic use , Animals , Colorectal Neoplasms/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Flavonols/pharmacology , Flavonols/therapeutic use , Humans , Signal Transduction/drug effects
9.
Article in English | MEDLINE | ID: mdl-26640503

ABSTRACT

Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...