Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 153(4): 485-494, 2020 05.
Article in English | MEDLINE | ID: mdl-31556456

ABSTRACT

Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density. We aimed to identify the potential mechanism by which HFI-419 enhances memory by utilizing rat primary cultures of hippocampal cells. Alterations to dendritic spine density were assessed in the presence of varying concentrations of HFI-419 at different stages of hippocampal cell development. In addition, glucose uptake and changes to spine density were assessed in the presence of indinavir, an inhibitor of the glucose transporter 4 (GLUT4 ), or the matrix metalloprotease inhibitor CAS 204140-01-2. We confirmed that inhibition of IRAP activity with HFI-419 enhanced spatial working memory in rats, and determined that this enhancement may be driven by GLUT4 -mediated changes to dendritic spine density. We observed that IRAP inhibition increased dendritic spine density prior to peak dendritic growth in hippocampal neurons, and that spine formation was inhibited when GLUT4 -mediated glucose uptake was blocked. In addition, during the peak phase of dendritic spine growth, the effect of IRAP inhibition on enhancement of dendritic spine density resulted specifically in an increase in the proportion of mushroom/stubby-like spines, a morphology associated with memory and learning. Moreover, these spines were deemed to be functional based on their expression of the pre-synaptic markers vesicular glutamate transporter 1 and synapsin. Overall, or findings suggest that IRAP inhibitors may facilitate memory by increasing hippocampal dendritic spine density via a GLUT4 -mediated mechanism. Cover Image for this issue: doi: 10.1111/jnc.14745.


Subject(s)
Cystinyl Aminopeptidase/antagonists & inhibitors , Cystinyl Aminopeptidase/metabolism , Dendritic Spines/metabolism , Glucose/metabolism , Animals , Biological Transport/drug effects , Biological Transport/physiology , Cells, Cultured , Dendritic Spines/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Female , Male , Pregnancy , Rats , Rats, Sprague-Dawley
2.
Neurosci Lett ; 628: 171-8, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27345383

ABSTRACT

Indwelling cannulas are often used to deliver pharmacological agents into the lateral ventricles of the brain to study their effects on memory and learning, yet little is known about the possible adverse effects of the cannulation itself. In this study, the effect of implanting an indwelling cannula into the right lateral ventricle was examined with respect to cognitive function and tissue damage in rats. Specifically, the cannula passed through sections of the primary motor (M1) and somatosensory hind limb (S1HL) cortices. One week following implantation, rats were impaired on the rotarod task, implying a deficit in fine motor control, likely caused by the passage of the cannula through the aforementioned cortical regions. Importantly, neither spatial working nor recognition memory was adversely affected. Histological examination showed immune cell activation only in the area immediately surrounding the cannulation site and not spreading to other brain regions. Both GFAP and CD-11b mRNA expression was elevated in the area immediately surrounding the cannulation site, but not in the contralateral hemisphere or the hippocampus. Neither of the inflammatory cytokines, TNF-α or IL-6, were upregulated in any region. These results show that cannulation into the lateral ventricle does not impair cognition and indicates that nootropic agents delivered via this method are enhancing normal memory rather than rescuing deficits caused by the surgery procedure.


Subject(s)
Catheterization/adverse effects , Lateral Ventricles/injuries , Memory, Short-Term , Recognition, Psychology , Spatial Memory , Animals , Cannula/adverse effects , Glial Fibrillary Acidic Protein/metabolism , Inflammation , Interleukin-6/metabolism , Male , Motor Cortex/injuries , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/injuries , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...