Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Chem Biol ; 6(8): 587-94, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20622858

ABSTRACT

G protein-coupled receptor (GPCR) oligomers have been proposed to play critical roles in cell signaling, but confirmation of their existence in a native context remains elusive, as no direct interactions between receptors have been reported. To demonstrate their presence in native tissues, we developed a time-resolved FRET strategy that is based on receptor labeling with selective fluorescent ligands. Specific FRET signals were observed with four different receptors expressed in cell lines, consistent with their dimeric or oligomeric nature in these transfected cells. More notably, the comparison between FRET signals measured with sets of fluorescent agonists and antagonists was consistent with an asymmetric relationship of the two protomers in an activated GPCR dimer. Finally, we applied the strategy to native tissues and succeeded in demonstrating the presence of oxytocin receptor dimers and/or oligomers in mammary gland.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Oligopeptides/chemistry , Receptors, G-Protein-Coupled/metabolism , Algorithms , Animals , Antidiuretic Hormone Receptor Antagonists , COS Cells , Cell Line , Chlorocebus aethiops , Dimerization , Dopamine D2 Receptor Antagonists , Female , Fluorescent Dyes , Ligands , Mammary Glands, Animal/metabolism , Models, Molecular , Oligopeptides/metabolism , Radioligand Assay , Rats , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Oxytocin/agonists , Receptors, Oxytocin/antagonists & inhibitors , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism
2.
J Mol Biol ; 388(3): 491-507, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19285506

ABSTRACT

The V2 vasopressin receptor is a G-protein-coupled receptor that regulates the renal antidiuretic response. Its third intracellular loop is involved in the coupling not only with the GalphaS protein but also with gC1qR, a potential chaperone of G-protein-coupled receptors. In this report, we describe the NMR solution structure of the V2 i3 loop under a cyclized form (i3_cyc) and characterize its interaction with gC1qR. i3_cyc formed a left-twisted alpha-helical hairpin structure. The building of a model of the entire V2 receptor including the i3_cyc NMR structure clarified the side-chain orientation of charged residues, in agreement with literature mutagenesis reports. In the model, the i3 loop formed a rigid helical column, protruding deep inside the cytoplasm, as does the i3 loop in the recently elucidated structure of squid rhodopsin. However, its higher packing angle resulted in a different structural motif at the intracellular interface, which may be important for the specific recognition of GalphaS. Moreover, we could estimate the apparent K(d) of the i3_cyc/gC1qR complex by anisotropy fluorescence. Using a shorter and more soluble version of i3_cyc, which encompassed the putative site of gC1qR binding, we showed by NMR saturation transfer difference spectroscopy that the binding surface corresponded to the central arginine cluster. Binding to gC1qR induced the folding of the otherwise disordered short peptide into a spiral-like path formed by a succession of I and IV turns. Our simulations suggested that this folding would rigidify the arginine cluster in the entire i3 loop and would alter the conformation of the cytosolic extensions of TM V and TM VI helices. In agreement with this conformational rearrangement, we observed that binding of gC1qR to the full-length receptor modifies the intrinsic tryptophan fluorescence binding curves of V2 to an antagonist.


Subject(s)
Magnetic Resonance Spectroscopy , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Receptors, Vasopressin/chemistry , Receptors, Vasopressin/metabolism , Amino Acid Sequence , Animals , Fluorescence Polarization , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Rats
3.
J Med Chem ; 50(20): 4976-85, 2007 Oct 04.
Article in English | MEDLINE | ID: mdl-17850055

ABSTRACT

A series of fluorescent ligands designed for vasopressin and oxytocin G protein-coupled receptors was synthesized and characterized to develop fluorescence polarization or homogeneous time-resolved fluorescence (HTRF) binding assays. These ligands, labeled with europium pyridine-bis-bipyridine cryptate or with Alexa 488,546,647 selectively bound to the vasopressin V1a and oxytocin receptors with high affinities and exhibited antagonistic properties. The affinities of several unlabeled ligands determined by our homogeneous assays on membrane preparations or on intact cells into 96- and 384-well plate formats were similar to those determined by usual radioligand binding methods. Compared to other binding assays, the polarization and HTRF binding assays are nonradiaoactive, therefore safer to perform, yet very sensitive and homogeneous, therefore easier and faster to automate. These methods are thus suitable for efficient drug high-throughput screening procedures and can easily be applied to other G protein-coupled receptor models.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Fluorescent Dyes/chemistry , Oligopeptides/chemical synthesis , Receptors, Oxytocin/antagonists & inhibitors , Animals , Binding, Competitive , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Cyclic AMP/analogs & derivatives , Cyclic AMP/chemistry , Fluoresceins/chemistry , Fluorescence Polarization , Fluorescence Resonance Energy Transfer , Ligands , Oligopeptides/chemistry , Oligopeptides/pharmacology , Organometallic Compounds/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Quinolinium Compounds/chemistry , Radioligand Assay , Receptors, Oxytocin/agonists , Receptors, Vasopressin/agonists
4.
J Med Chem ; 48(9): 3379-88, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15857144

ABSTRACT

We designed and synthesized new photoactivatable linear vasopressin analogues containing benzophenone photophores. All compounds were monitored and purified using RP-HPLC and characterized by mass spectrometry. Affinity and selectivity were determined in CHO cells expressing either human V(1a), V(1b) or V(2) receptor subtypes. Within the series, compounds 6 (PhCH(2)CO-lBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)) and 9 (PhCH(2)CO-dBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)), containing a benzoylphenylalanine residue (Bpa), were selected and their antagonistic properties determined (K(inact) = 1.87 and 0.35 nM, respectively). The dissociation constant of the most potent candidate (compound 9) was further calculated from saturation experiments using the (125)I derivative (K(d) = 0.07 +/- 0.01 nM). Photolabeling experiments using radioactive compound 9 as a probe were specific and UV-dependent and allowed the identification of two bands at molecular masses around 85-90 kDa and 46 kDa, respectively, as previously described by Phalipou et al., using two photoreactive linear azidopeptide antagonists. The results suggest therefore that compound 9 is a potent new tool for the accurate mapping of the human V(1a) receptor antagonist binding site.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Benzophenones/chemical synthesis , Oligopeptides/chemical synthesis , Photoaffinity Labels/chemical synthesis , Animals , Benzophenones/chemistry , Benzophenones/pharmacology , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Humans , Iodine Radioisotopes , Kinetics , Light , Oligopeptides/chemistry , Oligopeptides/pharmacology , Photoaffinity Labels/chemistry , Photoaffinity Labels/pharmacology , Radioligand Assay , Receptors, Vasopressin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL