Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AJR Am J Roentgenol ; 217(4): 908-918, 2021 10.
Article in English | MEDLINE | ID: mdl-33336582

ABSTRACT

BACKGROUND. In-gantry MRI-guided biopsy (MRGB) of the prostate has been shown to be more accurate than other targeted prostate biopsy methods. However, the optimal number of cores to obtain during in-gantry MRGB remains undetermined. OBJECTIVE. The purpose of this study was to assess the diagnostic yield of obtaining an incremental number of cores from the primary lesion and of second lesion sampling during in-gantry MRGB of the prostate. METHODS. This retrospective study included 128 men with 163 prostate lesions who underwent in-gantry MRGB between 2016 and 2019. The men had a total of 163 lesions sampled with two or more cores, 121 lesions sampled with three or more cores, and 52 lesions sampled with four or more cores. A total of 40 men underwent sampling of a second lesion. Upgrade on a given core was defined as a greater International Society of Urological Pathology (ISUP) grade group (GG) relative to the previously obtained cores. Clinically significant prostate cancer (csPCa) was defined as ISUP GG 2 or greater. RESULTS. The frequency of any upgrade was 12.9% (21/163) on core 2 versus 10.7% (13/121) on core 3 (p = .29 relative to core 2) and 1.9% (1/52) on core 4 (p = .03 relative to core 3). The frequency of upgrade to csPCa was 7.4% (12/163) on core 2 versus 4.1% (5/121) on core 3 (p = .13 relative to core 2) and 0% (0/52) on core 4 (p = .07 relative to core 3). The frequency of upgrade on core 2 was higher for anterior lesions (p < .001) and lesions with a higher PI-RADS score (p = .007); the frequency of upgrade on core 3 was higher for apical lesions (p = .01) and lesions with a higher PI-RADS score (p = .01). Sampling of a second lesion resulted in an upgrade in a single patient (2.5%; 1/40); both lesions were PI-RADS category 4 and showed csPCa. CONCLUSION. When performing in-gantry MRGB of the prostate, obtaining three cores from the primary lesion is warranted to optimize csPCa diagnosis. Obtaining a fourth core from the primary lesion or sampling a second lesion has very low yield in upgrading cancer diagnoses. CLINICAL IMPACT. To reduce patient discomfort and procedure times, operators may refrain from obtaining more than three cores or second lesion sampling.


Subject(s)
Biopsy, Large-Core Needle/methods , Image-Guided Biopsy/methods , Magnetic Resonance Imaging, Interventional/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Humans , Male , Middle Aged , Neoplasm Grading , Retrospective Studies
2.
J Magn Reson Imaging ; 50(4): 1133-1143, 2019 10.
Article in English | MEDLINE | ID: mdl-30892807

ABSTRACT

BACKGROUND: The 3D breast magnetic resonance fingerprinting (MRF) technique enables T1 and T2 mapping in breast tissues. Combined repeatability and reproducibility studies on breast T1 and T2 relaxometry are lacking. PURPOSE: To assess test-retest and two-visit repeatability and interscanner reproducibility of the 3D breast MRF technique in a single-institution setting. STUDY TYPE: Prospective. SUBJECTS: Eighteen women (median age 29 years, range, 22-33 years) underwent Visit 1 scans on scanner 1. Ten of these women underwent test-retest scan repositioning after a 10-minute interval. Thirteen women had Visit 2 scans within 7-15 days in same menstrual cycle. The remaining five women had Visit 2 scans in the same menstrual phase in next menstrual cycle. Five women were also scanned on scanner 2 at both visits for interscanner reproducibility. FIELD STRENGTH/SEQUENCE: Two 3T MR scanners with the 3D breast MRF technique. ASSESSMENT: T1 and T2 MRF maps of both breasts. STATISTICAL TESTS: Mean T1 and T2 values for normal fibroglandular tissues were quantified at all scans. For variability, between and within-subjects coefficients of variation (bCV and wCV, respectively) were assessed. Repeatability was assessed with Bland-Altman analysis and coefficient of repeatability (CR). Reproducibility was assessed with interscanner coefficient of variation (CoV) and Wilcoxon signed-rank test. RESULTS: The bCV at test-retest scans was 9-12% for T1 , 7-17% for T2 , wCV was <4% for T1 , and <7% for T2 . For two visits in same menstrual cycle, bCV was 10-15% for T1 , 13-17% for T2 , wCV was <7% for T1 and <5% for T2 . For two visits in the same menstrual phase, bCV was 6-14% for T1 , 15-18% for T2 , wCV was <7% for T1 , and <9% for T2 . For test-retest scans, CR for T1 and T2 were 130 msec and 11 msec. For two visit scans, CR was <290 msec for T1 and 10-14 msec for T2 . Interscanner CoV was 3.3-3.6% for T1 and 5.1-6.6% for T2 , with no differences between interscanner measurements (P = 1.00 for T1 , P = 0.344 for T2 ). DATA CONCLUSION: 3D breast MRF measurements are repeatable across scan timings and scanners and may be useful in clinical applications in breast imaging. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1133-1143.


Subject(s)
Breast/anatomy & histology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Female , Humans , Prospective Studies , Reference Values , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...