Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200296

ABSTRACT

Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFß signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.


Subject(s)
Epithelial Cells/pathology , Lung/pathology , Nedd4 Ubiquitin Protein Ligases/physiology , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/pathology , Animals , Animals, Newborn , Epithelial Cells/metabolism , Female , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/etiology
2.
Nat Commun ; 11(1): 2012, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332792

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na+ channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFß signaling, which promotes fibrotic remodeling. Our data support a role of mucociliary dysfunction and aberrant epithelial pro-fibrotic response in the multifactorial disease pathogenesis. Further, treatment with the anti-fibrotic drug pirfenidone reduced pulmonary fibrosis in this model. This model may therefore aid studies of the pathogenesis and therapy of IPF.


Subject(s)
Epithelial Cells/pathology , Idiopathic Pulmonary Fibrosis/genetics , Lung/pathology , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Adult , Aged , Animals , Biopsy , Disease Models, Animal , Epithelial Sodium Channels/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Mice , Mice, Knockout , Middle Aged , Mucin-5B/metabolism , Proteomics , Pyridones/administration & dosage , Ubiquitination
3.
PLoS One ; 10(6): e0129897, 2015.
Article in English | MEDLINE | ID: mdl-26066648

ABSTRACT

INTRODUCTION: Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. OBJECTIVE: We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the ß-subunit of the epithelial Na⁺ channel (ßENaC). METHODS: ßENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. RESULTS: Airway surface dehydration in ßENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in ßENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. CONCLUSIONS: We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.


Subject(s)
Dehydration/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Cells, Cultured , Dehydration/etiology , Dehydration/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mucins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/pathology , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...