Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220152, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37427467

ABSTRACT

The large, iconic nests constructed by social species are engineered to create internal conditions buffered from external climatic extremes, to allow reproduction and/or food production. Nest-inhabiting eusocial Macrotermitinae (Blattodea: Isoptera) are outstanding palaeo-tropical ecosystem engineers that evolved fungus-growing to break down plant matter ca 62 Mya; the termites feed on the fungus and plant matter. Fungus-growing ensures a constant food supply, but the fungi need temperature-buffered, high humidity conditions, created in architecturally complex, often tall, nest-structures (mounds). Given the need for constant and similar internal nest conditions by fungi farmed by different Macrotermes species, we assessed whether current distributions of six African Macrotermes correlate with similar variables, and whether this would reflect in expected species' distribution shifts with climate change. The primary variables explaining species' distributions were not the same for the different species. Distributionally, three of the six species are predicted to see declines in highly suitable climate. For two species, range increases should be small (less than 9%), and for a single species, M. vitrialatus, 'very suitable' climate could increase by 64%. Mismatches in vegetation requirements and anthropogenic habitat transformation may preclude range expansion, however, presaging disruption to ecosystem patterns and processes that will cascade through systems at both landscape and continental scales. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Subject(s)
Ecosystem , Isoptera , Animals , Fungi , Ecology , Temperature
3.
Animals (Basel) ; 13(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978554

ABSTRACT

Domestic cats (Felis catus) are amongst the most destructive invasive vertebrates globally, depredating billions of native animals annually. The size and seasonal variation of their geographical "footprint" is key to understanding their effects on wildlife, particularly if they live near conservation areas. Here we report the first GPS-tracking studies of free-roaming owned cats in the city of Cape Town, South Africa. A total of 23 cats was tracked (14 cats in summer, 9 in winter) using miniature (22 g) GPS locators in 2010-2011. In summer, all cats living on the urban-edge (UE: n = 7) made extensive use of protected areas, while only one of seven urban (U) cats (>150 m from the edge) did so. In winter two of four UE and two of five U cats entered protected areas. Home ranges (95% kernel density estimates) were significantly larger in summer (3.00 ± 1.23 ha) than winter (0.87 ± 0.25 ha) and cats ventured further from their homes in summer (maximum 849 m) than in winter (max 298 m). The predation risk posed by caracal (Caracal caracal) may limit the time cats spend in protected areas, but our results suggest that cat buffers around conservation areas should be at least ~600 m wide to reduce impacts to native fauna.

5.
Proc Biol Sci ; 289(1971): 20212771, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35350853

ABSTRACT

Models aimed at understanding C4-savannah distribution for Australia, Africa and South America support transition to forest at high mean annual precipitation (MAP), and savannah grasslands of Madagascar have recently been reported to be similarly limited. Yet, when savannah/grassland presence data are plotted against MAP for the various ecosystems across the Malagasy Central Highlands, the relationship does not hold. Furthermore, it does not always hold in other sites on other continents. Instead, in high-rainfall savannahs, palaeo-human impacts appear to have selected a fire-adapted habitat, creating tipping points that allow savannah persistence despite high rainfall, suppressing forest return. We conducted the largest systematic literature review to date for global evidence of palaeo-human impacts in savannahs, and conclude that impacts are widespread and should be incorporated into models aimed at understanding savannah persistence at elevated precipitation, particularly as more palaeodata emerges. Building on existing studies, we refine the MAP savannah relationship at higher MAP. Palaeoanthropogenic impact can help explain inconsistencies in the savannah/forest boundary at higher MAP, and points to a key role for palaeoecology in understanding systems. Including these effects presents a crucial change to our understanding of factors determining global savannah distribution, supporting a human hand in much of their formation.


Subject(s)
Ecosystem , Fires , Adaptation, Physiological , Anthropogenic Effects , Forests , Grassland , Humans
6.
J Therm Biol ; 100: 103068, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34503805

ABSTRACT

Microhabitats may be crucial in buffering organisms from temperature extremes, particularly given increases in maximum temperature associated with global climate change. For example, thermoregulation in termite mounds is influenced by prevailing ambient conditions, and plant canopies may reduce external temperatures, in turn lowering internal temperatures. This buffering may be crucial during heat waves. Whether this happens, and to what extent, remains equivocal, however. We tracked internal temperatures in eight inhabited and six uninhabited Trinervitermes trinervoides mounds, half of each group of which were shaded by vegetation. T. trinervoides seek to maintain internal mound temperatures at c. 20 °C in winter and c. 30 °C in summer. Temperatures were logged for 72 h in winter, and again in summer. Internal temperatures of uninhabited mounds mirrored those of external temperatures, with temperatures varying by c. 15 °C, although shading was associated with some buffering of internal temperatures. Internal temperatures within inhabited mounds were far less variable, varying by c. 6 °C over the course of our study. In summer, exposed inhabited mounds maintained temperatures c. 29.5 °C, whilst shaded inhabited mounds were c. 27.5 °C. In winter, mean internal temperatures of exposed and shaded inhabited mounds were very similar, at 21.8 and 22.0 °C, respectively. Internal mound temperature varied significantly with external (ambient) temperature, mound activity, temperature, shading, and to a small extent, mound volume. The buffering effect of shade was evident in summer (c. 2 °C) but not in winter, suggesting that the benefit of such temperature modulation may be most important when ambient temperatures reach heat extremes, e.g. during heat waves.


Subject(s)
Behavior, Animal , Body Temperature , Isoptera/physiology , Movement , Animals , Biodiversity , Infrared Rays , Plants
7.
Nat Ecol Evol ; 5(10): 1453-1461, 2021 10.
Article in English | MEDLINE | ID: mdl-34400826

ABSTRACT

Pollinator decline has attracted global attention and substantial efforts are underway to respond through national pollinator strategies and action plans. These policy responses require clarity on what is driving pollinator decline and what risks it generates for society in different parts of the world. Using a formal expert elicitation process, we evaluated the relative regional and global importance of eight drivers of pollinator decline and ten consequent risks to human well-being. Our results indicate that global policy responses should focus on reducing pressure from changes in land cover and configuration, land management and pesticides, as these were considered very important drivers in most regions. We quantify how the importance of drivers and risks from pollinator decline, differ among regions. For example, losing access to managed pollinators was considered a serious risk only for people in North America, whereas yield instability in pollinator-dependent crops was classed as a serious or high risk in four regions but only a moderate risk in Europe and North America. Overall, perceived risks were substantially higher in the Global South. Despite extensive research on pollinator decline, our analysis reveals considerable scientific uncertainty about what this means for human society.


Subject(s)
Pesticides , Pollination , Crops, Agricultural , Europe , Humans , North America
9.
Sci Rep ; 11(1): 56, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420160

ABSTRACT

High-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms' responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.

10.
Proc Biol Sci ; 287(1937): 20201956, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33109006

ABSTRACT

Long considered a consequence of anthropogenic agropastoralism, the origin of Madagascar's central highland grassland is hotly disputed. Arguments that ancient endemic grasses formed grassland maintained by extinct grazers and fire have been persuasive. Consequent calls to repeal fire-suppression legislation, burn protected areas, and accept pastoralism as the 'salvation' of endemic grasses mount, even as the International Union for Conservation of Nature (IUCN) declares 98% of lemurs face extinction through fire-driven deforestation. By analysing grass data from contemporary studies, and assessing endemic vertebrate habitat and feeding guilds, we find that although the grassland potentially dates from the Miocene, it is inhospitable to endemic vertebrates and lacks obligate grazers. Endemic grasses are absent from dominant grassland assemblages, yet not from woodland and forest assemblages. There is compelling evidence that humans entered a highland dominated by woodland and forest, and burned it; by 1000 current era (CE), grass pollens eclipsed tree pollens, reminiscent of prevailing fire-induced transformation of African miombo woodland to grassland. Endemic grasses are survivors from vanished woody habitats where grassy patches were likely small and ephemeral, precluding adaptive radiation by endemic vertebrates to form grazing-guilds. Today forests, relic tapia woodland, and outcompeted endemic grasses progressively retreat in a burning grassland dominated by non-endemic, grazing-adapted grasses and cattle.


Subject(s)
Adaptation, Physiological , Biodiversity , Forests , Grassland , Madagascar
11.
J Plant Res ; 133(6): 873-881, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32997284

ABSTRACT

Some evolutionary radiations produce a number of closely-related species that continue to coexist. In such plant systems, when pre-pollination barriers are weak, relatively strong post-pollination reproductive barriers are required to maintain species boundaries. Even when post-pollination barriers are in place, however, reproductive interference and pollinator dependence may strengthen selection for pre-pollination barriers. We assessed whether coexistence of species from the unusually speciose Erica genus in the fynbos biome, South Africa, is enabled through pre-pollination or post-pollination barriers. We also tested for reproductive interference and pollinator dependence. We investigated this in natural populations of three bird-pollinated Erica species (Erica plukenetii, E. curviflora and E. coccinea), which form part of a large guild of congeneric species that co-flower and share a single pollinator species (Orange-breasted Sunbird Anthobaphes violacea). At least two of the three pre-pollination barriers assessed (distribution ranges, flowering phenology and flower morphology) were weak in each species pair. Hand-pollination experiments revealed that seed set from heterospecific pollination (average 8%) was significantly lower than seed set from outcross pollination (average 50%), supporting the hypothesis that species boundaries are maintained through post-pollination barriers. Reproductive interference, assessed in one population by applying outcross pollen three hours after applying heterospecific pollen, significantly reduced seed set compared to outcross pollen alone. This may drive selection for traits that enhance pre-pollination barriers, particularly given that two of the three species were self-sterile, and therefore pollinator dependent. This study suggests that post-pollination reproductive barriers could facilitate the coexistence of congeneric species, in a recent radiation with weak pre-pollination reproductive barriers.


Subject(s)
Ericaceae/physiology , Flowers/physiology , Pollination , Animals , Birds , Pollen , Reproduction , Species Specificity
12.
Sci Total Environ ; 730: 139096, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32388110

ABSTRACT

Various environmental challenges are rapidly threatening ecosystems and societies globally. Major interventions and a strategic approach are required to minimize harm and to avoid reaching catastrophic tipping points. Setting evidence-based priorities aids maximizing the impact of the limited resources available for environmental interventions. Focusing on protecting both food security and biodiversity, international experts prioritized major environmental challenges for intervention based on three comprehensive criteria - importance, neglect, and tractability. The top priorities differ between food security and biodiversity. For food security, the top priorities are pollinator loss, soil compaction, and nutrient depletion, and for biodiversity conservation, ocean acidification and land and sea use (especially habitat degradation) are the main concerns. While climate change might be the most pressing environmental challenge and mitigation is clearly off-track, other issues rank higher because of climate change's high attention in research. Research and policy agendas do not yet consistently cover these priorities. Thus, a shift in attention towards the high-priority environmental challenges, identified here, is needed to increase the effectiveness of global environmental protection.


Subject(s)
Food Supply , Biodiversity , Climate Change , Conservation of Natural Resources , Hydrogen-Ion Concentration , Seawater
13.
Ambio ; 49(6): 1211-1221, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31564051

ABSTRACT

A horizon scan was conducted to identify emerging and intensifying issues for biodiversity conservation in South Africa over the next 5-10 years. South African biodiversity experts submitted 63 issues of which ten were identified as priorities using the Delphi method. These priority issues were then plotted along axes of social agreement and scientific certainty, to ascertain whether issues might be "simple" (amenable to solutions from science alone), "complicated" (socially agreed upon but technically complicated), "complex" (scientifically challenging and significant levels of social disagreement) or "chaotic" (high social disagreement and highly scientifically challenging). Only three of the issues were likely to be resolved by improved science alone, while the remainder require engagement with social, economic and political factors. Fortunately, none of the issues were considered chaotic. Nevertheless, strategic communication, education and engagement with the populace and policy makers were considered vital for addressing emerging issues.


Subject(s)
Biodiversity , Conservation of Natural Resources , Politics , South Africa
14.
Glob Chang Biol ; 25(10): 3516-3527, 2019 10.
Article in English | MEDLINE | ID: mdl-31293015

ABSTRACT

The global increase in the proportion of land cultivated with pollinator-dependent crops implies increased reliance on pollination services. Yet agricultural practices themselves can profoundly affect pollinator supply and pollination. Extensive monocultures are associated with a limited pollinator supply and reduced pollination, whereas agricultural diversification can enhance both. Therefore, areas where agricultural diversity has increased, or at least been maintained, may better sustain high and more stable productivity of pollinator-dependent crops. Given that >80% of all crops depend, to varying extents, on insect pollination, a global increase in agricultural pollinator dependence over recent decades might have led to a concomitant increase in agricultural diversification. We evaluated whether an increase in the area of pollinator-dependent crops has indeed been associated with an increase in agricultural diversity, measured here as crop diversity, at the global, regional, and country scales for the period 1961-2016. Globally, results show a relatively weak and decelerating rise in agricultural diversity over time that was largely decoupled from the strong and continually increasing trend in agricultural dependency on pollinators. At regional and country levels, there was no consistent relationship between temporal changes in pollinator dependence and crop diversification. Instead, our results show heterogeneous responses in which increasing pollinator dependence for some countries and regions has been associated with either an increase or a decrease in agricultural diversity. Particularly worrisome is a rapid expansion of pollinator-dependent oilseed crops in several countries of the Americas and Asia that has resulted in a decrease in agricultural diversity. In these regions, reliance on pollinators is increasing, yet agricultural practices that undermine pollination services are expanding. Our analysis has thereby identified world regions of particular concern where environmentally damaging practices associated with large-scale, industrial agriculture threaten key ecosystem services that underlie productivity, in addition to other benefits provided by biodiversity.


Subject(s)
Agriculture , Ecosystem , Animals , Asia , Crops, Agricultural , Pollination
15.
Trends Ecol Evol ; 34(1): 83-94, 2019 01.
Article in English | MEDLINE | ID: mdl-30554808

ABSTRACT

We present the results of our tenth annual horizon scan. We identified 15 emerging priority topics that may have major positive or negative effects on the future conservation of global biodiversity, but currently have low awareness within the conservation community. We hope to increase research and policy attention on these areas, improving the capacity of the community to mitigate impacts of potentially negative issues, and maximise the benefits of issues that provide opportunities. Topics include advances in crop breeding, which may affect insects and land use; manipulations of natural water flows and weather systems on the Tibetan Plateau; release of carbon and mercury from melting polar ice and thawing permafrost; new funding schemes and regulations; and land-use changes across Indo-Malaysia.


Subject(s)
Conservation of Natural Resources , Forecasting , Biodiversity , Conservation of Natural Resources/trends
16.
Trends Ecol Evol ; 33(1): 47-58, 2018 01.
Article in English | MEDLINE | ID: mdl-29217396

ABSTRACT

This is our ninth annual horizon scan to identify emerging issues that we believe could affect global biological diversity, natural capital and ecosystem services, and conservation efforts. Our diverse and international team, with expertise in horizon scanning, science communication, as well as conservation science, practice, and policy, reviewed 117 potential issues. We identified the 15 that may have the greatest positive or negative effects but are not yet well recognised by the global conservation community. Themes among these topics include new mechanisms driving the emergence and geographic expansion of diseases, innovative biotechnologies, reassessments of global change, and the development of strategic infrastructure to facilitate global economic priorities.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem
17.
PeerJ ; 4: e2249, 2016.
Article in English | MEDLINE | ID: mdl-27602260

ABSTRACT

Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

18.
Science ; 339(6127): 1608-11, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23449997

ABSTRACT

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.


Subject(s)
Crops, Agricultural/growth & development , Fruit/growth & development , Insecta/physiology , Pollination , Animals , Bees/physiology , Flowers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...