Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Colloid Interface Sci ; 328: 103181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749383

ABSTRACT

Three-dimensional (3D) printing is one of the world's top novel technologies in the food industry due to the production of food in different conditions and places (restaurants, homes, catering, schools, for dysphagia patients, and astronauts' food) and the production of personalized food. Nowadays, 3D printers are used in the main food industries, including meat, dairy, cereals, fruits, and vegetables, and have been able to produce successfully on a small scale. However, due to the expansion of this technology, it has challenges such as high-scale production, selection of printable food, formulation optimization, and food production according to the consumer's opinion. Food additives (gums, enzymes, proteins, starches, polyphenols, spices, probiotics, algae, edible insects, oils, salts, vitamins, flavors, and by-products) are one of the main components of the formulation that can be effective in food production according to the consumer's attitude. Food additives can have the highest impact on textural and sensory characteristics, which can be effective in improving consumer attitudes and reducing food neophobia. Most of the 3D-printed food cannot be printed without the presence of hydrocolloids, because the proper flow of the selected formulation is one of the key factors in improving the quality of the printed product. Functional additives such as probiotics can be useful for specific purposes and functional food production. Food personalization for specific diseases with 3D printing technology requires a change in the formulation, which is closely related to the selection of correct food additives. For example, the production of 3D-printed plant-based steaks is not possible without the presence of additives, or the production of food for dysphagia patients is possible in many cases by adding hydrocolloids. In general, additives can improve the textural, rheological, nutritional, and sensory characteristics of 3D printed foods; so, investigating the mechanism of the additives on all the characteristics of the printed product can provide a wide perspective for industrial production and future studies.


Subject(s)
Food Additives , Printing, Three-Dimensional , Food Additives/chemistry , Humans
2.
Nutrients ; 15(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38068777

ABSTRACT

Oily fish is a rich source of energy, proteins, essential amino acids, lipids, vitamins, and minerals. Among the macronutrients with the highest contribution are lipids, mainly long-chain omega 3 polyunsaturated fatty acids (ω-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Both EPA and DHA play a beneficial role in promoting health and preventing many diseases, including cardiovascular diseases, such as stroke and acute myocardial infarction. They also contribute to the prevention of neurological, metabolic, and immune-system-related diseases, as well as supporting body-weight control. Oily fish consumption is also important at different stages of human life, from conception to old age. For example, DHA plays an important role in brain and retina development during fetal development and in the first two years of life, as it positively influences neurodevelopment, such as visual acuity, and cognitive functions. In contrast with the possible health benefits of the intake of oily fish, the presence of certain chemical pollutants, for example, heavy metals, can be a risk for the health of consumers, mainly in sensitive population groups such as pregnant women and children under 2 years of age. The presence of these pollutants is influenced to a greater extent by fish species, their role in the trophic chain, and their size. However, various studies state that the benefits outweigh the risk of consuming certain species. This review will be focused on the health benefits of the intake of three oily fish species, namely blue shark (Prionace glauca), shortfin mako shark (Isurus oxyrinchus), and swordfish (Xiphias gladius).


Subject(s)
Environmental Pollutants , Fatty Acids, Omega-3 , Perciformes , Sharks , Pregnancy , Animals , Child , Humans , Female , Infant , Sharks/metabolism , Fishes , Fatty Acids, Omega-3/metabolism , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism
3.
Int J Biol Macromol ; 193(Pt B): 1313-1323, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34728303

ABSTRACT

The present work was aimed to produce a novel bioactive nanofiber (NFs) based on Ethyl cellulose (EC), Soy protein isolated (SPI), and containing Bitter orange peel extract (BOPE) by electrospinning technology. The EC/SPI NFs were formulated with different weight ratios of 1:1, 2:1, and 1:2 denoted as ES11, ES21, and ES12, respectively, and investigated by several analyses. Based on the obtained results, the maximum hydrogen interactions between these two polymers, ES11 NFs offered a uniform morphology without bead with the diameter of 185.33 nm as a result of the compatibility of the polymer solutions of EC and SPI. Moreover, appropriate thermal stability was presented along with more porosity (78%), maximum water vapor transmission rate (657 g/m2.24h), good tensile stress (6.12 MPa), and acceptable water contact angel (82.3°). Therefore, ES11 NFs were selected as the optimal sample for incorporation of the BOPE as the antibacterial and antioxidant agent. According to the antioxidant activity test, the highest concentration (20% wt) of this extract increased the antioxidant activity of NF around 64.7% and also inhibited the growth of pathogenic bacteria (S. areus, and E. coli). Therefore, the ES11 electrospun NFs containing 20% BOPE can be a beneficial system to increase the safety and quality of foods.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/analogs & derivatives , Citrus sinensis/chemistry , Nanofibers/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Soybean Proteins/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Cellulose/chemistry , Food Packaging/methods , Polymers/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...