Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 105(1-2): 92-102, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23498093

ABSTRACT

PURPOSE: In a recent genome-wide association study for partial epilepsies in the European population, a common genetic variation has been reported to affect partial epilepsy only modestly. However, in complex diseases such as partial epilepsy, multiple factors (e.g. single nucleotide polymorphisms, microRNAs, metabolic and epigenetic factors) may target different sets of genes in the same pathway, affecting its function and thus causing the disease development. In this regard, we hypothesize that the pathways are critical for elucidating the mechanisms underlying partial epilepsy. METHODS: Previously we had developed a novel methodology with the aim of identifying the disease-related pathways. We had combined evidence of genetic association with current knowledge of (i) biochemical pathways, (ii) protein-protein interaction networks, and (iii) the functional information of selected single nucleotide polymorphisms. In our present study, we apply this methodology to a data set on partial epilepsy, including 3445 cases and 6935 controls of European ancestry. RESULTS: We have identified 30 overrepresented pathways with corrected p-values smaller than 10(-12). These pathways include complement and coagulation cascades, cell cycle, focal adhesion, extra cellular matrix-receptor interaction, JAK-STAT signaling pathway, MAPK signaling pathway, proteasome, ribosome, calcium signaling and regulation of actin cytoskeleton pathways. Most of these pathways have growing scientific support in the literature as being associated with partial epilepsy. We also demonstrate that different factors affect distinct parts of the pathways, as shown here on complement and coagulation cascades pathway with a comparison of gene expression vs. genome-wide association study. CONCLUSIONS: Traditional studies on genome-wide association have not revealed strong associations in epilepsies, since these single nucleotide polymorphisms are not shared by most of the patients. Our results suggest that it is more effective to incorporate the functional effect of a single nucleotide polymorphism on the gene product, protein-protein interaction networks and functional enrichment tools into genome-wide association studies. These can then be used to determine leading molecular pathways, which cannot be detected through traditional analyses. We hope that this type of analysis brings the research community one step closer to unraveling the complex genetic structure of epilepsies.


Subject(s)
Databases, Genetic , Epilepsies, Partial/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Signal Transduction/genetics , Epilepsies, Partial/diagnosis , Epilepsies, Partial/epidemiology , Humans
2.
Biopolymers ; 33(1): 173-92, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8427934

ABSTRACT

Low energy conformations have been generated for melittin, pancreatic polypeptide, and ribonuclease S-peptide, both in the vicinity of x-ray structures by energy refinement and by an unconstrained search over the entire conformational space. Since the structural polymorphism of these medium-sized peptides in crystal and solution is moderate, comparing the calculated conformation to x-ray and nmr data provides information on local and global behavior of potential functions. Local analysis includes standardization calculations, which show that models with standard geometry can approximate good resolution x-ray data with less than 0.5 A rms deviation (RMSD). However, the atomic coordinates are shifted up to 2 A RMSD by local energy minimization, and thus 2 A is generally the smallest RMSD value one can target in a conformational search using the same energy evaluation models. The unconstrained search was performed by a buildup-type method based on dynamic programming. To accelerate the generation of structures in the conformational search, we used the ECEPP potential, defined in terms of standard polypeptide geometry. A number of low energy conformations were further refined by relaxing the assumption of standard bond lengths and bond angles through the use of the CHARMM potential, and the hydrophobic folding energies of Eisenberg and McLachlan were calculated. Each conformation is described in terms of the RMSD from the native, hydrogen-bonding structure, solvent-accessible surface area, and the ratio of surfaces corresponding to nonpolar and polar residues. The unconstrained search finds conformations that are different from the native, sometimes substantially, and in addition, have lower conformational energies than the native. The origin of deviations is different for each of the three peptides, but in all examples the refined x-ray structures have lower energies than the calculated incorrect folds when (1) the assumption of standard bond lengths and bond angles is relaxed; (2) a small and constant effective dielectric permittivity (epsilon < 10) is used; and (3) the hydrophobic folding energy is incorporated into the potential.


Subject(s)
Melitten/chemistry , Pancreatic Polypeptide/chemistry , Peptide Fragments/chemistry , Protein Conformation , Protein Folding , Protein Structure, Secondary , Ribonucleases/chemistry , Amino Acid Sequence , Calorimetry , Models, Molecular , Molecular Sequence Data , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...