Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bosn J Basic Med Sci ; 18(1): 55-65, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-28954203

ABSTRACT

Salt-resistant yeast strains are highly demanded by industry due to the exposure of yeast cells to high concentrations of salt, in various industrial bioprocesses. The aim of this study was to perform a physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae (S. cerevisiae) mutant generated by evolutionary engineering. NaCl-resistant S. cerevisiae strains were obtained by ethyl methanesulfonate (EMS) mutagenesis followed by successive batch cultivations in the presence of gradually increasing NaCl concentrations, up to 8.5% w/v of NaCl (1.45 M). The most probable number (MPN) method, high-performance liquid chromatography (HPLC), and glucose oxidase/peroxidase method were used for physiological analysis, while Agilent yeast DNA microarray systems were used for transcriptome analysis. NaCl-resistant mutant strain T8 was highly cross-resistant to LiCl and highly sensitive to AlCl3. In the absence of NaCl stress, T8 strain had significantly higher trehalose and glycogen levels compared to the reference strain. Global transcriptome analysis by means of DNA microarrays showed that the genes related to stress response, carbohydrate transport, glycogen and trehalose biosynthesis, as well as biofilm formation, were upregulated. According to gene set enrichment analysis, 548 genes were upregulated and 22 downregulated in T8 strain, compared to the reference strain. Among the 548 upregulated genes, the highest upregulation was observed for the FLO11 (MUC1) gene (92-fold that of the reference strain). Overall, evolutionary engineering by chemical mutagenesis and increasing NaCl concentrations is a promising approach in developing industrial strains for biotechnological applications.


Subject(s)
Genetic Engineering/methods , Mutation/genetics , Saccharomyces cerevisiae/genetics , Salt Tolerance/genetics , Carbohydrate Metabolism/genetics , Ethyl Methanesulfonate , Microarray Analysis , Mutagenesis/drug effects , Mutagens/pharmacology , Saccharomyces cerevisiae/metabolism , Sodium Chloride/pharmacology , Transcriptome/drug effects
2.
J Biosci Bioeng ; 124(3): 309-318, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28552194

ABSTRACT

Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v-1) and gradually increasing (5-11.4%, v v-1) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v-1) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v-1) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization.


Subject(s)
Diploidy , Directed Molecular Evolution , Ethanol/metabolism , Haploidy , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Down-Regulation , Fermentation/drug effects , Glycolysis , Proteomics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL