Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotech Histochem ; 99(3): 103-112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38482807

ABSTRACT

Myoglobinuric acute renal failure (MARF) is a structural and functional disorder that occurs in the kidney following the release of muscle cell contents into the circulation. In this present study, possible protective and curative effects of Ferula elaeochytris extract against kidney and liver damage in experimentally induced MARF in a rat model were investigated. 3-4 Month-old, 200-250 g Sprague Dawley rats were divided into 8 equal groups with 7 rats per group. Group I was a no-intervention Control group. All groups except for the Group I were dehydrated for 16 hours. Following this dehydration, 50% v/v aqueous glycerol solution was injected into both hind leg muscles of the animals, at a dose of 8 ml/kg. The rats were given physiological saline (SF) once orally before the model was administered (Group II) and after the model was administered (Group V). Similarly, two different doses of Ferula elaeochytris root extract (40 mg/kg and 80 mg/kg) were dissolved in 2 ml of SF and administered orally before (Groups III and IV) and after (Group VI, VII) the model was created. Following the experimental period, kidney and liver tissues were removed from all groups, and fixed in 10% neutral formaldehyde solution for light microscopic examinations. Intracellular vacuolization, enlargement in the Bowman's space, widespread atrophy in the tubular structures, luminal enlargement, and desquamation were detected in the kidney tissue sections of all the experimental model groups. In the liver tissue sections, was detected hepatocyte degeneration, intracellular vacuolization, irregularity in cell membrane borders, and apoptotic bodies. These histopathological consequences of MARF were evaluated for all groups, and whereas a curative effect of Ferula elaeochytris could be seen, its protective effect was higher than its curative effect.


Subject(s)
Acute Kidney Injury , Ferula , Kidney , Liver , Plant Extracts , Rats, Sprague-Dawley , Animals , Ferula/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Liver/drug effects , Liver/pathology , Kidney/drug effects , Kidney/pathology , Rats , Myoglobinuria/drug therapy , Male
2.
Sci Rep ; 13(1): 20774, 2023 11 26.
Article in English | MEDLINE | ID: mdl-38008769

ABSTRACT

The objective of this investigation was to examine alterations in PTEN expression within ovarian tissue in a rat model of polycystic ovary syndrome (PCOS). The analysis also encompassed the examination of PTEN alterations in the ovarian tissue throughout the process of folliculogenesis in rats with normal ovulatory cycles. The study involved 12 adult female Sprague‒Dawley rats randomly assigned to the letrozole-induced polycystic ovary syndrome (PCOS) group as part of an animal-based research endeavour. The sections derived from the ovaries were subjected to immunohistochemical staining for PTEN. The evaluation of PTEN staining levels in ovarian tissues was conducted using electron microscopy. Follicle counts, as well as hormonal and biochemical analyses (serum luteinising hormone (LH), follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), testosterone, oestradiol levels and serum glucose, triglyceride, HDL and LDL-cholesterol levels), were conducted to provide evidence of the manifestation of polycystic ovary syndrome (PCOS) in rats. The number of primordial and Graafian follicles in the PCOS group decreased significantly, and the number of primary, secondary and antral follicles increased significantly. PTEN expression was found to be significantly higher in the PCOS group than in the control group in the primordial follicle oocyte cytoplasm, primordial follicle granulosa cells, primary follicle oocyte cytoplasm, primary follicle granulosa cells, antral follicle oocyte cytoplasm, antral follicle granulosa cells, and corpus luteum (p = 0.007, p = 0.001, p = 0.001, p = 0.001, p = 0.001, p = 0.002, and p = 0.018, respectively). In the non-PCOS group, a time-dependent comparison of the amount of oocyte cytoplasm and PTEN staining in granulosa cells of the oocytes at different stages of development was performed. While the follicles were developing from the primordial follicle to the primary and antral follicle, the amount of PTEN staining in the oocyte cytoplasm decreased, whereas the PTEN activity in the granulosa cells increased as the oocyte developed (p = 0.001 and p = 0.001, respectively). The current investigation demonstrated changes in PTEN expression in ovarian tissue throughout the course of normal folliculogenesis, as well as in instances of disrupted folliculogenesis, with a focus on rats with PCOS.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Rats , Animals , Polycystic Ovary Syndrome/metabolism , Rats, Sprague-Dawley , Ovarian Follicle/metabolism , Granulosa Cells/metabolism , Anti-Mullerian Hormone , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
3.
Reprod Fertil ; 3(3): 187-197, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35972314

ABSTRACT

Abstract: This study was carried out to investigate whether repeated controlled ovarian hyperstimulation (COH) affects ovarian reserve. For this reason, we aimed to show possible changes in the expression of PTEN and FOXO3, which are involved in preserving the over-reserve, after applying the COH protocol methods. For this purpose, 18 young Wistar albino female rats (8 weeks old) were randomly assigned as group 1 (control), group 2, and group 3 as 6 subjects in each group. Experimental groups were treated with 10 IU/0.1 mL pregnant mare's serum gonadotropin and a COH protocol consisting of 10 IU/0.1 mL human chorionic gonadotropin injection after 48 h. This procedure was applied three and five times to group 2 and group 3, respectively. For the control groups, the same procedures were performed with 0.1 mL of 0.9% sodium chloride solution. At the end of the experiment, the ovarium tissues were placed in a 10% neutral formaldehyde solution for light microscopic examinations. In histological sections stained with hematoxylin and eosin, the number of ovarian follicles was determined using the physical dissector method. However, the expression of PTEN, FOXO3, and LH-R molecules was evaluated by immunohistochemical methods. As a result of our study, it was concluded that COH administration reduces the expression levels of PTEN and FOXO3 proteins and LH-R, which are among the essential components of the PIK3 intracellular signaling pathway and also increased the levels of hormones such as follicle-stimulating hormone, estradiol, and luteinizing hormone, which are over-reserve markers, and causes adverse effects on the histological structure, oocyte morphology, and number of ovaries. Lay summary: Today, approximately 10-15% of couples experience fertility problems. However, assisted reproductive techniques help people with fertility problems to get pregnant. The main purpose of these techniques is to put the sperm and egg together outside the woman's body where the eggs are fertilized and then to return the fertilized eggs (embryos) to the womb. During a woman's menstrual cycle, several hormones influence the growth of the eggs. This process can be mimicked by using various medications. Medication is given to increase the number of eggs that develop. However, this method is not the same as normal ovulation. Therefore, in our study, we wanted to examine the effect that developing multiple follicles has on the number and quality of eggs remaining for the future.


Subject(s)
Horse Diseases , Ovarian Hyperstimulation Syndrome , Ovarian Reserve , Rodent Diseases , Pregnancy , Rats , Female , Male , Animals , Horses , Humans , Rats, Wistar , Semen , Ovarian Hyperstimulation Syndrome/veterinary , Follicle Stimulating Hormone , PTEN Phosphohydrolase
SELECTION OF CITATIONS
SEARCH DETAIL
...